Ferramenta para transcrição do alfabeto datilológico para texto utilizando Microsoft Kinect

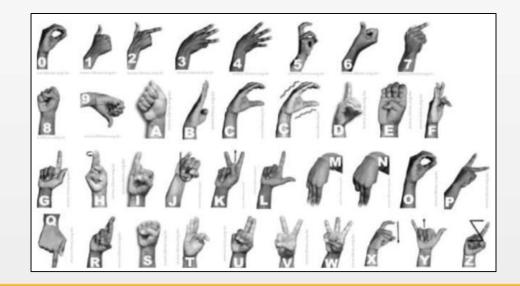
Diego Marcelo Santin

Orientador: Aurélio Faustino Hoppe

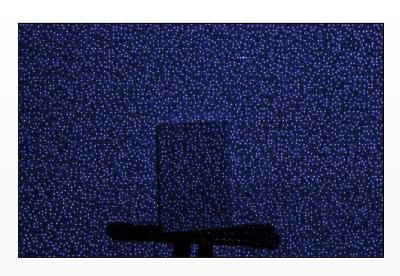
Motivação

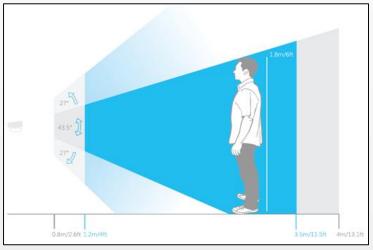
Acessibilidade dos deficientes auditivos

 Adaptação de novas tecnologias para pessoas com necessidades especiais


 Utilização do sensor Microsoft Kinect para captura de movimentos

Fundamentação

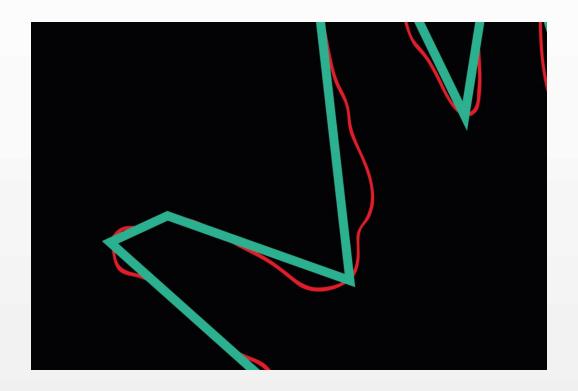

LIBRAS



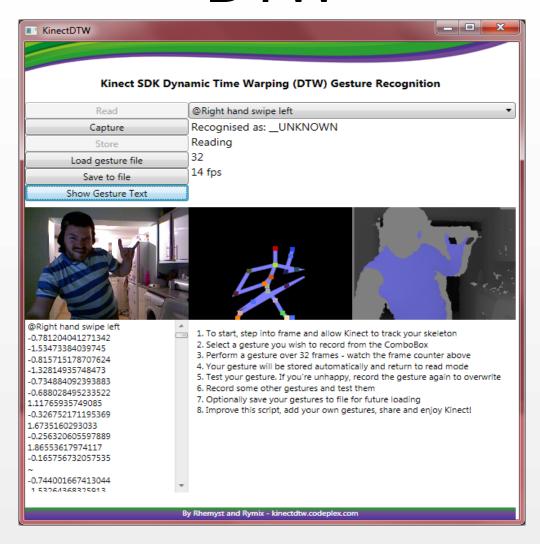
Fundamentação

 Captura de dados de profundidade

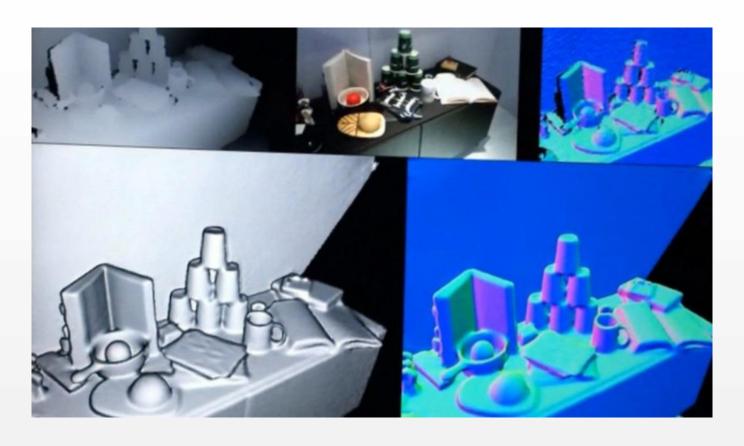
Uso da câmera RGB


Motor de inclinação

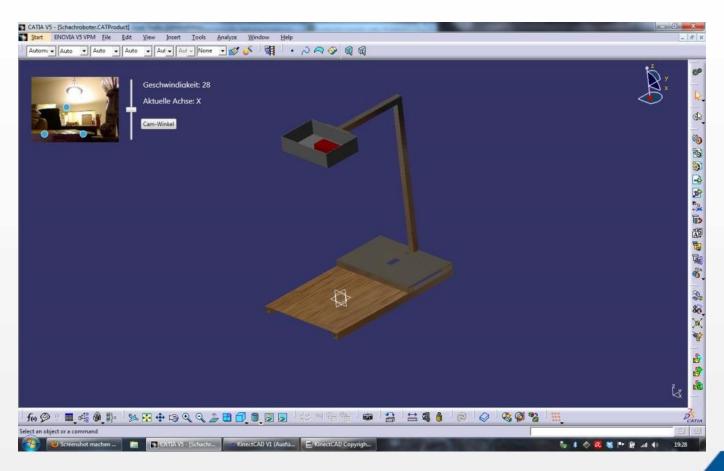
Influência da luz


Fundamentação

Algoritmo Ramer-Douglas-Peucker



Trabalhos relacionados – Kinect DTW



Trabalhos relacionados – Kinect Fusion

Trabalhos relacionados - KinectCAD

Trabalhos relacionados

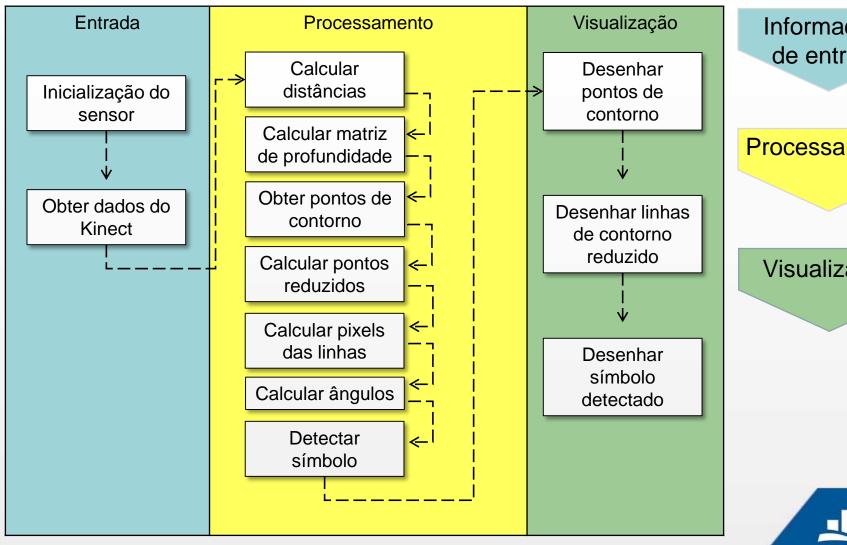
característica / trabalho relacionado	Kinect DTW	Kinect Fusion	KinectCAD
utiliza sekeletal tracking	X		X
utiliza <i>stream</i> de vídeo	X	X	X
utiliza <i>stream</i> de profundidade		X	
utiliza Kinect <i>for</i> Windows SDK	X	X	X
faz reconhecimento de gestos	X		X
principal funcionalidade utilizada da Kinect <i>for</i> Windows SDK	skeletal tracking	<i>stream</i> de profundidade	<i>stream</i> de profundidade

Trabalho proposto

- Capturar os gestos do usuário utilizando os sensores do Kinect
- Reconhecer os gestos baseando-se em um banco prédefinido com o alfabeto datilológico
- Transcrever o movimento realizado para a correspondência em texto

Requisitos

- Permitir ao usuário informar qualquer letra e/ou número contidos no alfabeto datilológico (RF)
- Transcrever a entrada do usuário para texto na tela do computador (RF)
- Utilizar um arquivo XML contendo dados sobre as formas geométricas para comparação com os sinais de entrada (RF)



Requisitos

- Ser implementado utilizando a linguagem de programação C# (RNF)
- Ser compatível com sistemas operacionais que ofereçam suporte ao .NET Framework (RNF)
- Utilizar o sensor de movimentos Microsoft Kinect (RNF)
- Utilizar o Kinect for Windows SDK (RNF)

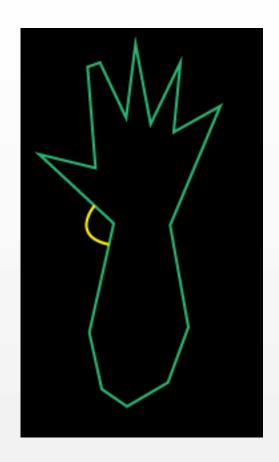
Etapas da transcrição

Informações de entrada

Processamento

Visualização

Desenvolvimento: visão final



Informação de entrada

```
<SymbolData
  <Symbols>
    <Symbol character="53">
      <SymbolPoints>
        <SymbolPoint angle="40" />
        <SymbolPoint angle="15" />
        <SymbolPoint angle="15" />
        <SymbolPoint angle="20" />
        <SymbolPoint angle="30" />
        <SymbolPoint angle="35" />
      </SymbolPoints>
    </Symbol>
  </Symbols>
</SymbolData>
```


Comparação dos ângulos

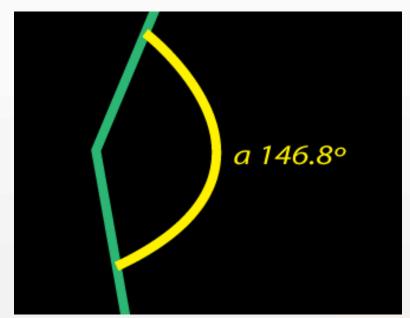
```
angle >= (point.Angle-GAP) && angle <= (point.Angle+GAP)
angleComparer comparer(currentPoint);
angulo = std::find_if(angles.begin(), angles.end(), comparer);</pre>
```


Ângulos processados

Ângulo em radianos:

```
Vector2D<double>::angle(p2-p1, p3-p1);
```

Produto interno:

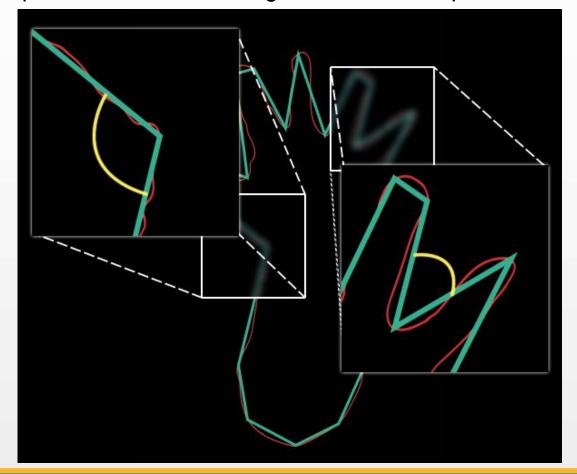

```
math::acos( (v1 * v2) / (v1.norm() * v2.norm()) );
```

Normal:

```
math::sqrt(x*x + y*y);
```

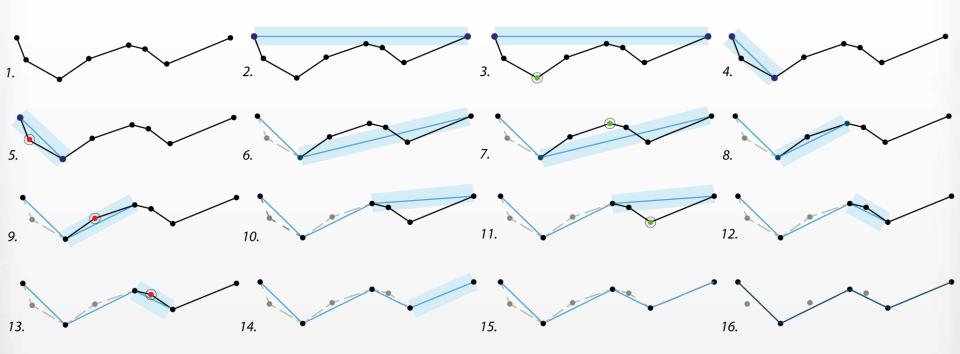
Valor em graus:

```
rad * 180.0 / M PI;
```

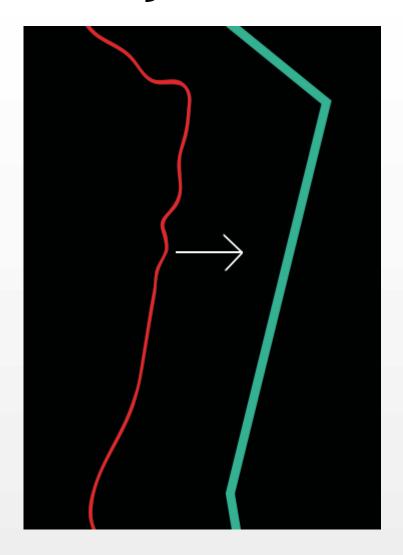



Detecção dos ângulos

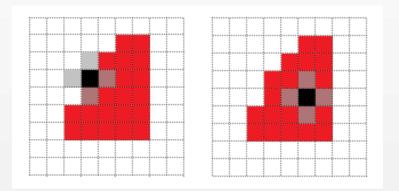
Executada em todos pontos do contorno


Para cada ponto existente, um ângulo é formado é pelas linhas adjacentes ao

ponto



Aplicação de Ramer-Douglas-Peucker



Redução das linhas de contorno

- Busca de pontos adjacentes
- Cálculo da fronteira

Matriz de profundidade

000000000000000000000000000000000001

Distâncias

- Uso do sensor de profundidade
- Cálculo efetuado utilizando bitshift

Captura dos dados

- Leitura dos dados do sensor de profundidade, utilizados para criação do contorno do usuário
- Leitura dos dados da câmera RGB, utilizados para representar o feedback dado ao usuário

Testes

- Testes efetuados utilizando 27 dos 35 símbolos presentes no alfabeto datilológico
- Símbolos cadastrados separadamente e em paralelo
- Símbolos cadastrados com ângulos côncavos e convexos, ou apenas ângulos côncavos
- Percentual de acerto computado por seção
- Alteração de C# para C++

			~
LTADOS			
	4 6 1 3 3 6	64 7.4 1 6	
			7__

Símbolos cadastrados separadamente – 70%			Símbolos cadastrados em paralelo – 11%				
0	OK	G	OK	0	NÃO OK	G	NÃO OK
1	OK	I	OK	1	NÃO OK	I	NÃO OK
2	ОК	L	OK	2	NÃO OK	L	NÃO OK
3	OK	M	S-OK	3	NÃO OK	M	NÃO OK
4	ОК	N	S-OK	4	NÃO OK	N	NÃO OK
5	S-OK	Р	OK	5	NÃO OK	Р	NÃO OK
6	OK	Q	S-OK	6	NÃO OK	Q	NÃO OK
7	OK	R	OK	7	NÃO OK	R	NÃO OK
9	S-OK	Т	OK	9	NÃO OK	Т	NÃO OK
Α	OK	U	S-OK	Α	NÃO OK	U	S-OK
В	S-OK	V	OK	В	NÃO OK	V	S-OK
С	S-OK	Y	OK	С	NÃO OK	Y	S-OK
D	OK			D	NÃO OK		
E	OK			E	NÃO OK		
F	ОК			F	NÃO OK		

OK = Identificado com sucesso. NÃO OK = Não identificado. S-OK = Com dificuldades

Conclusões

Processamento satisfatório para detecção de contornos

 Resultado satisfatório para detecção de símbolos, cadastrados separadamente

DLL de processamento pode ser utilizada em outras plataformas

Limitações

- Operado apenas em plataformas que suportam .NET.
- Detecção exclusiva de símbolos estáticos
- Redução no reconhecimento dos símbolos quando cadastrados simultaneamente
- Distância limitada para total funcionalidade do software
- Forma única de execução do símbolo para reconhecimento

Extensões

- Aumentar a quantidade de ângulos descritos em cada símbolo e aprimorar a forma comparação utilizada
- Executar testes com um público alvo maior para estudar a viabilidade de implantação do software como um serviço público e gratuito
- Emitir um som correspondente ao símbolo detectado para aprimorar o treinamento do usuário
- Armazenar todos caracteres transcritos com o objetivo de possibilitar a escrita de uma frase
- Implementar detecção de símbolos que exijam movimentos

Demonstração

Obrigado!

