

MVM – Mattos Virtual Machine

Andrey de Oliveira
Prof. Mauro Marcelo Mattos, Doutor
FURB 2012/2

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Desenvolvimento
- Resultado e Discussão
- Conclusão
- Extensões
- Demonstração da Aplicação

Introdução

Aprendizado por projeto

Sistemas operacionais

Máquina virtual hipotética

Dispositivo móvel

Objetivos

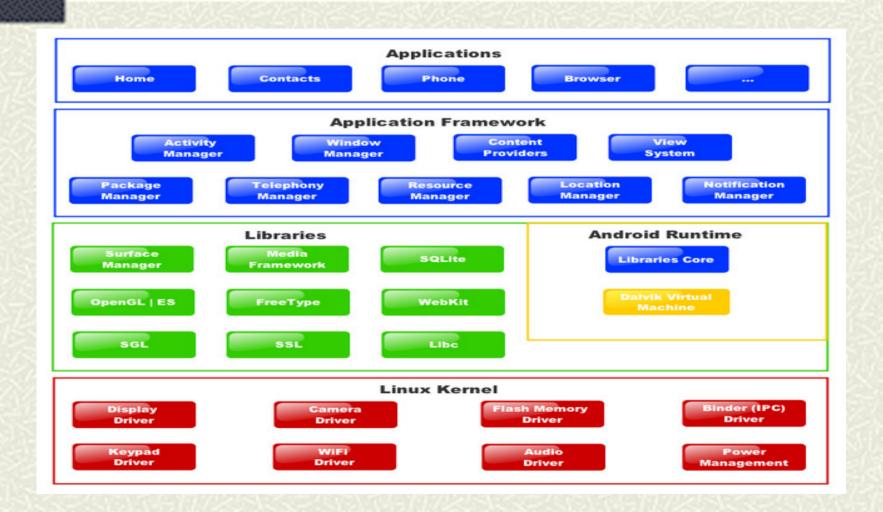
 Migrar a estrutura da MVM para a plataforma Android

Disponibilizar um editor de cenários

Validar a aplicação através de estudos de casos

Android

Máquina virtual


• MVM

Fundamentação Teórica Android

Formado por 4 camadas:

- Kernel
- Bibliotecas C/C++ e a Dalvik Virtual Machine (DVM)
- Frameworks de aplicações
- Aplicações

Fundamentação Teórica Android

Fundamentação Teórica Android - Kernel

Versão Linux 2.6.27

 Responsável pelo gerenciamento de processos, memória, thread, pilhas entre outros

Fundamentação Teórica Android – Bibliotecas/DVM

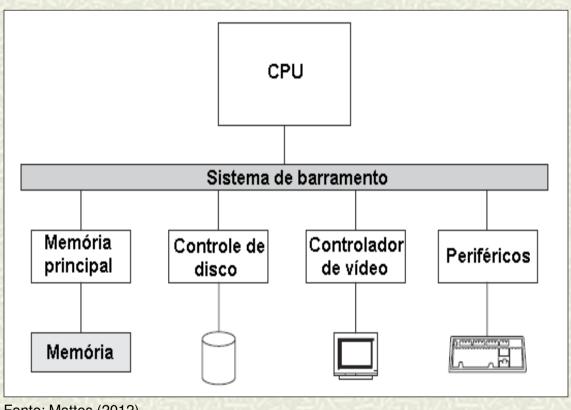
- Bibliotecas utilizadas pelo sistema
- DVM:
 - Separa os processos e assim gerenciar os erros de forma separada sem prejudicar o sistema
 - Utiliza o Kernel do Linux para o gerenciamento
 - Compila o bytecode (.class)
 - Converte (.dex)
 - Gera arquivo (.apk)

Android – Frameworks de Aplicações

- Acesso completo dos desenvolvedores
- Oferece um conjunto de serviços
 - Activity Manager ciclo de vida
 - Package Manager aplicações instaladas
 - Window Manager janelas de aplicações
 - Telephony Manager telefonia
 - Content Providers compartilhamento
 - Resource Manager recursos gráficos
 - View System componentes visuais
 - Location Manager localização

Fundamentação Teórica Android – Aplicações

Fundamentação Teórica Máquina Virtual


- Descrito em 1960 como uma abstração de software
- Formas de vitualização
 - Emulação
 - Virtualização nativa ou "virtualização cheia"
 - Paravirtualização
 - Virtualização no nível do sistema operacional

Fundamentação Teórica Máquina Virtual

- Características principais para um monitor de máquina virtual
 - Fidelidade
 - Performance
 - Segurança

 Exemplo acadêmico para propósitos educacionais

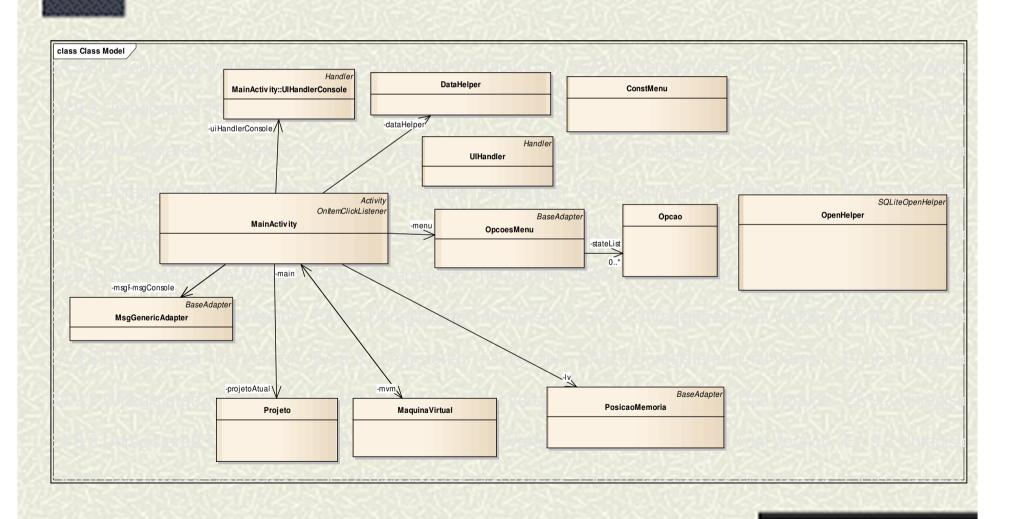
Construção de sua própria máquina

Fonte: Mattos (2012)

Figura 3 - arquitetura geral da MVM

- a) busca uma instrução na memória
- b) decodifica a instrução
- c) executa a operação correspondente e volta ao passo a

- Suporte a 52 instruções
 - Incremento/decremento de registradores
 - Empilhamento/desempilhamento de memória
 - Teste de registradores
 - Chamadas de rotinas
 - Interrupções
 - Troca de valores

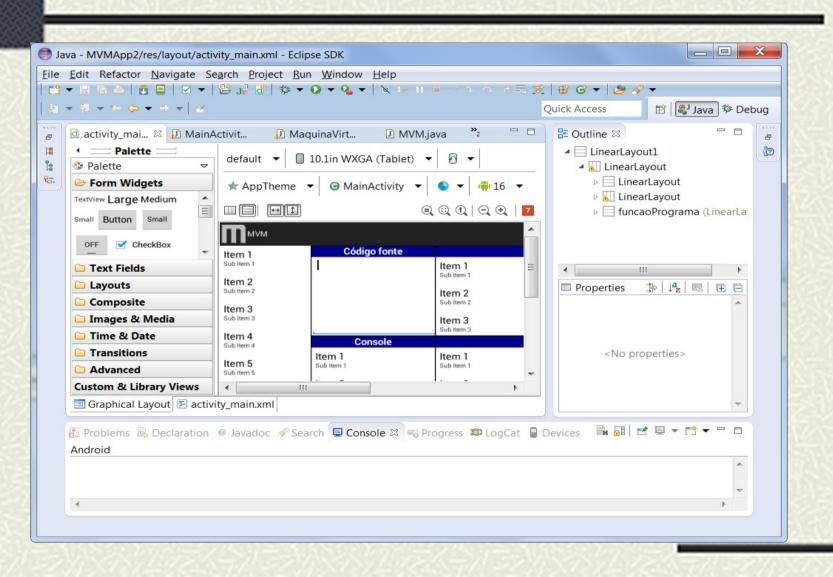

Desenvolvimento Roteiro

- Requisitos funcionais
- Diagrama de classe
- Implementação
 - Ferramentas Utilizadas
 - Recursos Suportados
 - Interface
 - Operacionalidade da Aplicação

Desenvolvimento Requisitos Funcionais

- a) O sistema deve permitir que o aluno desenvolvesse programas para a MVM no dispositivo móvel
- b) O aplicativo deve permitir que sejam carregados os projetos já salvos no dispositivo móvel
- c) Permitir a edição dos valores da memória da máquina
- d) Permitir que o código fonte do projeto escrito possa ser salvo e carregado novamente
- e) Permitir a exclusão do projeto
- f) Permitir que a execução do programa possa ser interrompida

Desenvolvimento Diagrama de Classes


Implementação: Ferramentas Utilizadas

Android Development Tools (ADT) 20.0.3

Integrated Development Environment (IDE)
 Eclipse

Tablet Genesis GT-1230

Desenvolvimento Implementação: Ferramentas Utilizadas

Implementação: Recursos Suportados

- Existe o suporte a
 - 1024 posições de memória
 - 52 instruções
 - 6 registradores

Registrador	Função
AX	Uso geral (Armazenamento de valores)
вх	Uso geral (Armazenamento de valores)
СХ	Uso geral (Armazenamento de valores)
IP	Ponteiro para a posição de memória que esta sendo lida
SP	Ponteiro para a chamada de sub-rotinas
ВР	Ponteiro para o controle de empilhamento de instruções

Implementação: Interface

MVM - Mattos Virtual Machine		:
Novo projeto (1)	Código fonte	Memória da CPU
	\bigcirc	000000 - 0
Carregar projeto	$igcup_{i}$	000001 - 0
~~		000002 - 0
Salvar projeto		000003 - 0
		000004 - 0
Compilar projeto		000005 - 0
© Cycoutes		000006 - 0
Executar		000007 - 0
Executar passo-		000008 - 0
passo	Console	Registradores
	3	(4)
Parar execução	\bigcup	
Excluir		

Implementação: Operacionalidade da aplicação

- init ax
- move bx,ax
- in ax
- inc bx
- inc bx
- inc bx
- dec ax
- test ax0,11
- jmp 3
- halt

Desenvolvimento mplementação: Operacionalidade da aplicação

Código fonte	Memória da CPU
init ax	000000 - 0
move <u>bx</u> ,ax in ax	000001 - 3
inc <u>bx</u>	000002 - 29
inc <u>bx</u> inc <u>bx</u>	000003 - 20
dec ax test ax0,11	000004 - 20
Console	Registradores
	IP - 12
	AX - 0
	BX - 9
	CX - 0
	BP - 0

Figura 28 – Resultado das instruções da figura 27

Obs: Deve-se informar o valor 3 quando o sistema solicitar

Resultado e Discussão

Apresentação clara e objetiva de uma CPU

Problemas de desenvolvimento

Padronização dentre versões do Android

Resultado e Discussão

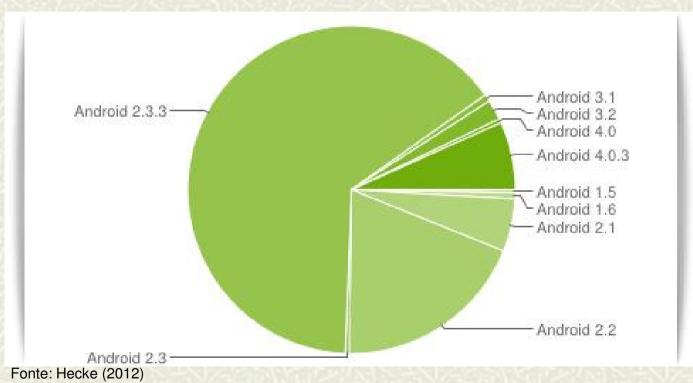
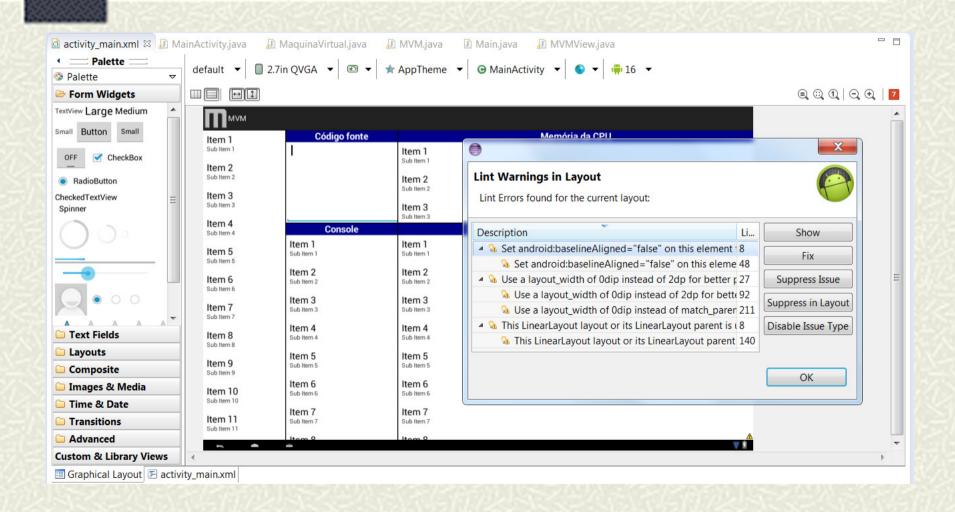



Figura 35 – Percentual de aparelhos e suas determinadas versões do Android

Resultado e Discussão

Conclusão

- MVM
- Construção de núcleos multi-tarefas
- Fixação de conceitos de SO
- Demonstração de algoritmos de alto nível relacionados a gerêcia de memória

Extensões

Chamada de métodos do sistema operacional

 Inserção de memória Random Access Memory (RAM) para acesso rápido e controle de paginação

 Suporte aos periféricos do aparelho como entradas universal serial bus (USB)

Demonstração da Aplicação

