Protótipo de Linígrafo Micro-controlado

André Zimmermann andrezimmermann@operamail.com

Orientador: Miguel Alexandre Wisintainer

Roteiro

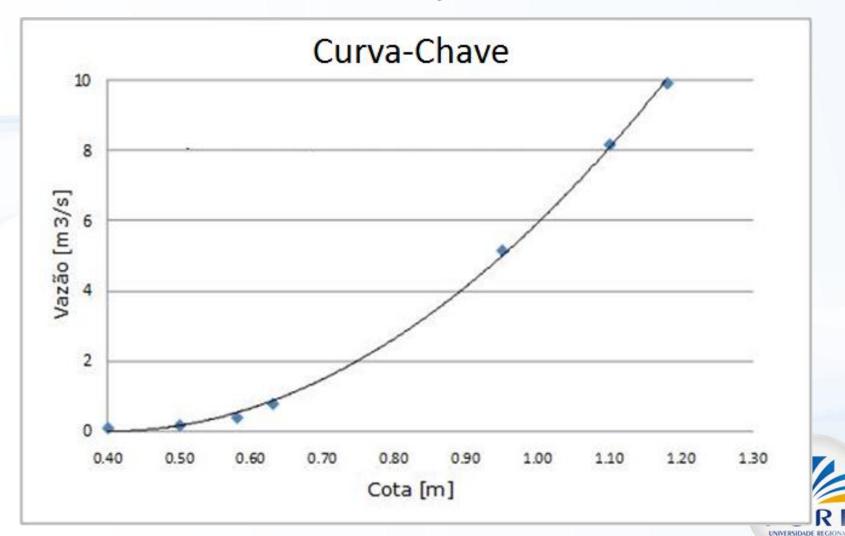
- Introdução
- Objetivos
- Fundamentação Teórica
- Especificação
- Desenvolvimento
- Operacionalidade da Implementação
- Resultados e Discussão
- Conclusões
- Extensões
- Demonstração

Introdução

- Utilização da hidrografia em projetos.
- Linígrafos comerciais.
 - Medição com contato.
 - Deficiência em soluções com telemetria.

Objetivos

- Montagem de um protótipo de linígrafo micro controlado:
 - Utilização de sonar e módulo GSM.
 - Implementação de web-service para armazenamento e exportação das medições.
 - ■Efetuar a comunicação entre o protótipo e o web-service.
 - Permitir o cadastramento de curva-chaves para exportação da vazão.



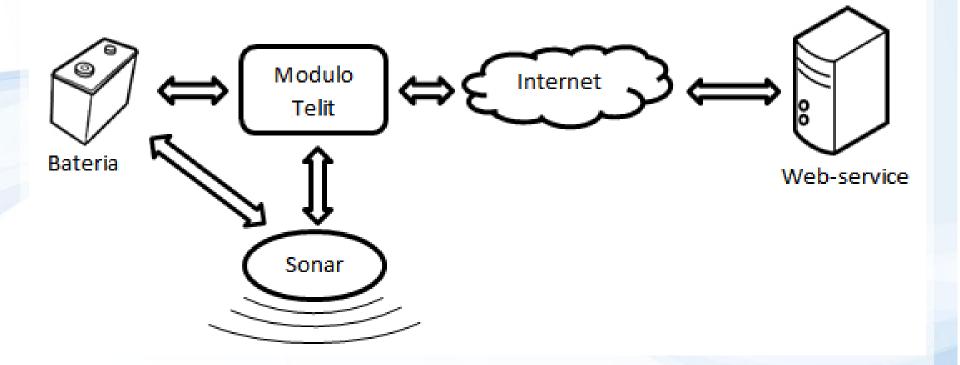
Fundamentação Teórica

- Principais conceitos:
 - Linígrafos.
 - Curva-chave.
 - GSM, GPRS e TCP/IP.
 - Arquitetura Restful.
 - XML Schema.
 - JAXB.

Fundamentação Teórica

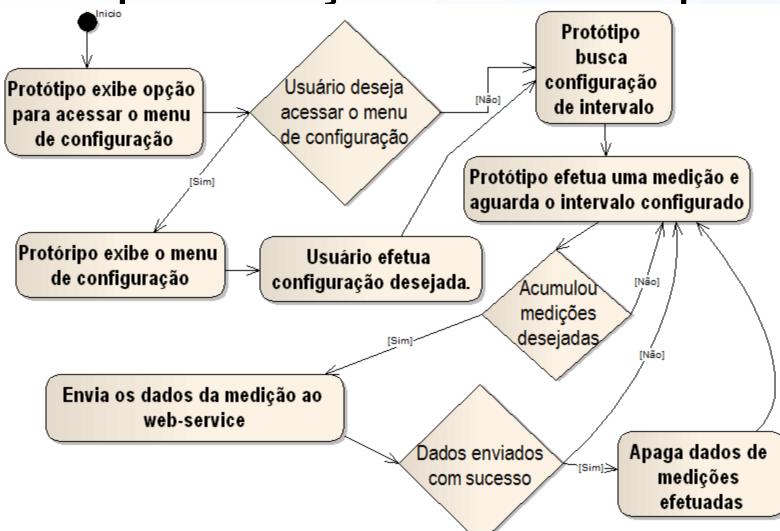
Trabalhos correlatos

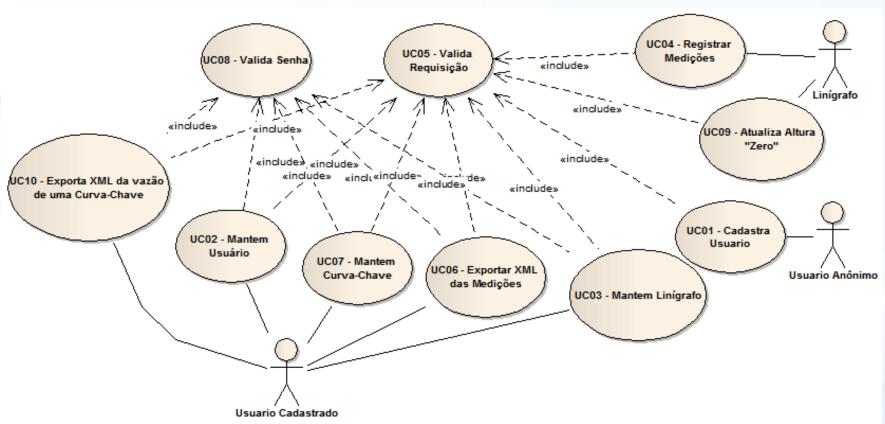
Trabalho	Rabello, Cruvinel e Denardin	Thalimedes	RLS	WL-15
Tipo de Medição	Boia - micro controlado	Boia - micro controlado	Sem contato por radar	Sensor de pressão
Faixa útil	0cm até 2,55 cm	0cm até 60m	80cm até 35m	0cm até 6.35m
Quantidade de registros	Não especificado	30.000	0	24.400
Telemetria	-	-	-	-


Requisitos funcionais:

- efetuar medições da distancia do protótipo até superfície do corpo d'-água
- enviar as medições efetuadas ao web-service e apagar estas medições caso enviou com sucesso.
- permitir a configuração do intervalo de tempo entre as medições e quantidade armazenadas para o início do envio das medições

Requisitos não funcionais:

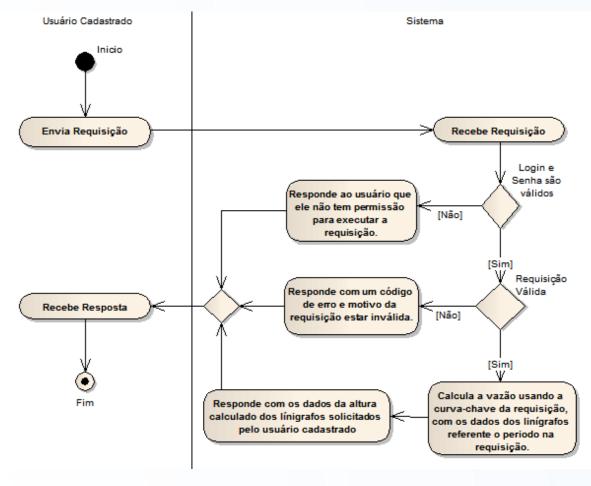

deve usar sonar para efetuar a medição da distancia.

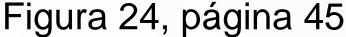


Especificação do Web-service

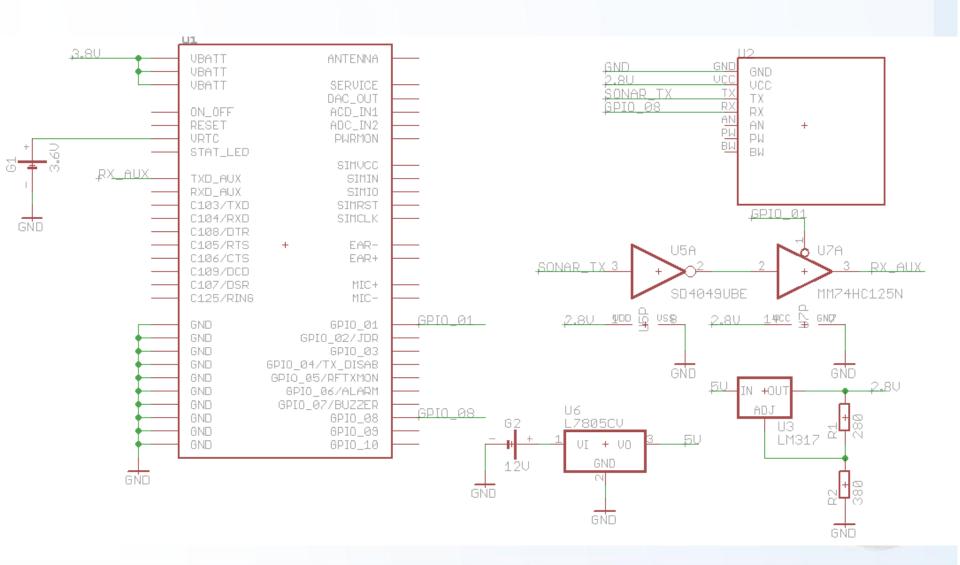
Requisitos Funcionais

- permitir o cadastro de linígrafos, com identificador único, situação e local de instalação.
- receber as informações de medições enviadas pelos linígrafos.
- exportar, em formato XML, as informações de medições enviadas pelos linígrafos, referentes a determinado um período.
- permitir o cadastro de várias curvas chaves para possibilitar o cálculo da vazão de diferentes corpos d'água.


Especificação do Web-service



Especificação do Web-service



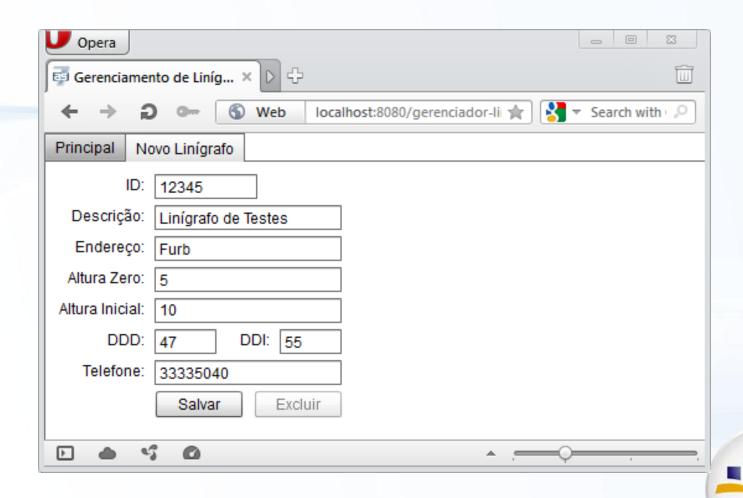
Protótipo

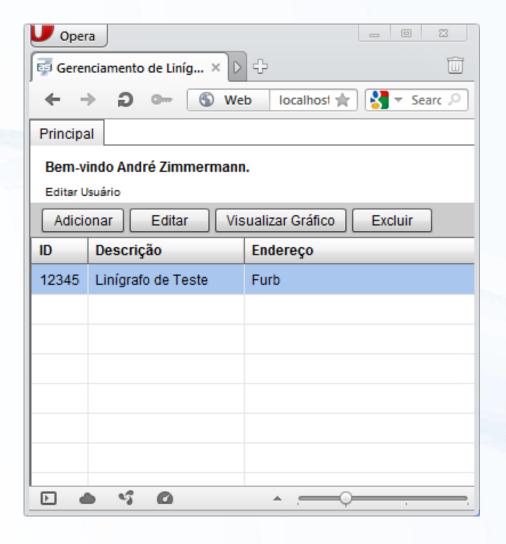
- Módulo Telit GE865-QUAD
- Kit de desenvolvimento da Sparkfun
- Sonar LV-MaxSonar da MaxBotix

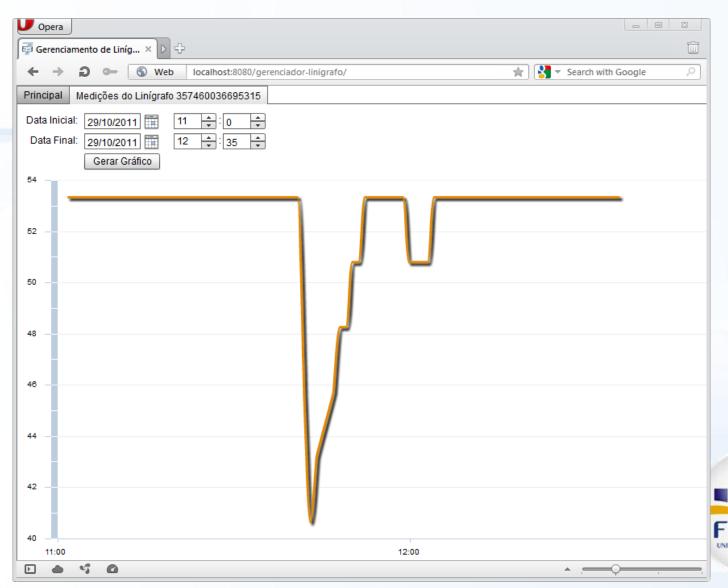

```
def adquireLeitura(self):
    print "Buscando medicão"
    GPIO.setIOvalue(8, 1)#Ao jogar alto, inicia aquisicao de dados
   GPIO.setIOvalue(1, 0)#Ao jogar baixo, ativa o tri-state
   MOD.sleep(2)#Tempo necesario para a calibragem do sonar
   #Tudo certo por aqui, posso comecar a buscar o valor da medicao
    SER2.read()#Tira o lixo da serial
    MOD.sleep(10)#Espera 1s
    GPIO.setIOvalue(8, 0)
    GPIO.setIOvalue(1, 1)
    readedString = SER2.read()#Le os valores
   readedString = readedString.replace(chr(13), '')
   print readedString
   listaMedicoes = readedString.split("R")
    del readedString
    valorMedio = 0
    numeroErros = 0:
    for i in range(len(listaMedicoes)):
        if (len(listaMedicoes[i]) == 3):# Se o número tem 3 dígitos
            while(listaMedicoes[i].startswith("0")):# equanto tiver zeros na frente
                listaMedicoes[i] = listaMedicoes[i][1:]#Remove o primeiro zero a esquerda
            if(listaMedicoes[i] == ""):
                numeroErros = numeroErros + 1
                continue
            try:
                valorMedio = valorMedio + int(listaMedicoes[i])#Converte agui para inteiros
            except ValueError:
                numeroErros = numeroErros + 1
        else:
            numeroErros = numeroErros + 1
    ret = valorMedio / (len(listaMedicoes) - numeroErros)
    print "Valor adquirido: "+ str(ret) + " inches"
    return ret
```


Web-service

- Utilização da framework Restlet.
- EJB 3.0 e a padrão de projeto DAO
- JAXB para a validação das requisições.

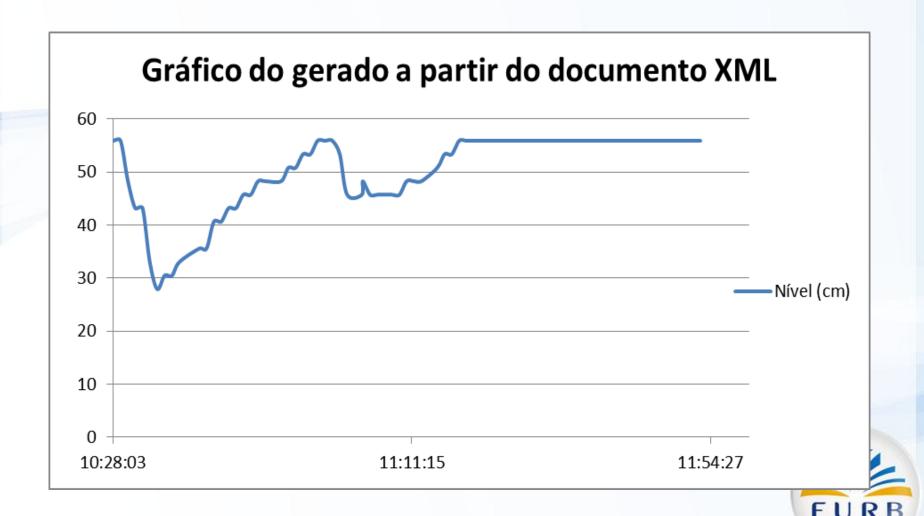

```
@Get
public String getResource() {
    String xmlValue = RestletUtil.getXmlValue(getQuery());//Inicia o processamento da requisição
    StringReader stringReader = new StringReader(xmlValue);
    MedicoesSimplesFetchRequest fetchData = validator.unmarshall(//Valida a requisição
            stringReader, MedicoesSimplesFetchRequest.class);
    if (fetchData == null) {//É valida?
        StringWriter xml = new StringWriter();//Não é valida
        JAXB.marshal(validator.getSchemaError(), xml);
        return xml.toString();//Responde com a mensagem de erro
    }//else
    Date inicial = fetchData.getDataInicial().toGregorianCalendar().getTime();//Pega dados enviados ao servidor
    Date dtFinal = fetchData.getDataFinal().toGregorianCalendar().getTime();
    Long[] array = fetchData.getLinigrafos().getId().toArray(new Long[0]);
    //Utiliza o EJB do Linígrafo para pegar as medições
    List<LinigrafoProcessado> buscaMedicaoSimples = getLinigrafoEJB().buscaMedicaoSimples(inicial, dtFinal, array);
    ObjectFactory of = new ObjectFactory();//Usa JAXB paga genan a resposta
    MedicoesSimplesFetchResponse resp = of.createMedicoesSimplesFetchResponse();
    for (LinigrafoProcessado lp : buscaMedicaoSimples) {
        LinigrafoMedicao lm = of.createLinigrafoMedicao();
        lm.setId(lp.getId());
        for (RegistroProcessado rp : lp.getListaRegistros()) {
            DadosMedicao createDados = of.createDadosMedicao();
            createDados.setData(XMLGregorianCalendarConverter.asXMLGregorianCalendar(rp.getDataRegistro()));
            createDados.setValor(rp.getValor());
            lm.getDadosMedicao().add(createDados);
        resp.getLinigrafoMedicao().add(lm);
    StringWriter xml = new StringWriter();
    JAXB.marshal(resp, xml);
    return xml.toString();//Responde ao usuário
```


```
@Override
public List<LinigrafoProcessado> buscaMedicaoSimples(Date inicial,
        Date dtFinal, Long... linigrafos) {
    List<LinigrafoProcessado> listaRetorno = new ArrayList<LinigrafoProcessado>();
    // Busca para cada linígrafo
    for (Long integer : linigrafos) {
        LinigrafoProcessado 1P = new LinigrafoProcessado();
        lP.setId(integer);
        List<RegistroMedicao> dados = getIDao().getDados(integer, inicial,
                dtFinal);
        for (RegistroMedicao registroMedicao : dados) {
            RegistroProcessado registroProcessado = new RegistroProcessado();
            // Altura do Linígrafo em Relação a Água h0
            // Altura da água no momento da Instalação hI
            // Distancia do linígrafo (Medição) hM
            // Altura atual é a (h0 - hM) + hI
            double altura = (registroMedicao.getAlturaZero() - registroMedicao
                    .getAlturaMedicao())
                    + registroMedicao.getAlturaInicial();
            altura = round(altura, 2);
            registroProcessado.setValor(altura);
            registroProcessado.setDataRegistro(registroMedicao
                    .getDataMedicao());
            1P.getListaRegistros().add(registroProcessado);
        listaRetorno.add(1P);
    return listaRetorno;
```



Opera Gerenciamento de Liníg	× ▶ &	
← → Ð ⊶ 6	Web localhost:8080/gerenciador-linigr 🛊	Search with G 🔎
	Login Usuário: Senha: Confirmar Crie uma conta	
		· .

Resultados e Discussão

- Precisão nas medições.
- Problemas inerentes a utilização da rede GSM.
- ·Limitações de hardware e pouca documentação.
- Web-service é de fácil consumo.
- •Problemas em relação à segurança do web-service.


Resultados

Resultados

Resultados

Trabalhos correlatos

Trabalho	Rabello, Cruvinel e Denardin	Thalimedes	RLS	WL-15	Protótipo
Tipo de Medição	Boia - micro controlado	Boia - micro controlado	Sem contato por radar	Sensor de pressão	Sem contato por sonar
Faixa útil	0cm até 2,55 cm	0cm até 60m	80,00 cm até 35 metros	0cm até 6.35m	15,24 cm até 6.45m
Quantidade de registros	Não especificado	30.000	0	24.400	3.000
Telemetria	-	-	-	-	GSM

Conclusões

- Comercialização.
- •Uso em pequenas bacias.

Extensões

- Melhorar o sinal GSM ou utilizar outro meio para a comunicação.
- Utilizar sonar com maior faixa útil.
- •Efetuar a configuração do protótipo através do web-service.
- •Implementar o cálculo da curva-chave através de métodos iterativos.
- •Utilizar um canal seguro para a permuta dos dados.
- •Gerar certificados digitais com dupla autenticação para garantir a identidade do protótipo.

Demonstração

```
Buscando medição
Valor adquirido: 26 inches
Enviando AT+CCLK?
Recebeu
+CCLK: "11/12/11,17:34:06"
OK
Buscando medição
Valor adquirido: 26 inches
Enviando AT+CCLK?
Recebeu
+CCLK: "11/12/11,17:34:20"
OK
Enviando AT+CGATT?
Recebeu
+CGATT: 0
Enviando AT+CGATT=1
Recebeu
```

Enviando AT#GPRS=1

HIP: 189.116.204.111

Recebeu

Obrigado.

