Extensão Swarm Intelligence para o Simulador Robocup Rescue

Alessandro Antonino Ostetto – Acadêmico Fernando dos Santos - Orientador

Roteiro

- Introdução
 - Objetivos
- Fundamentação Teórica
- Especificação
- Implementação
- Operacionalidade
- Resultados
- Conclusão
 - Extensões

Introdução

- Agentes e Sistemas Multiagentes (SMA)
 - Grandes problemas

- Simulador RoboCup Rescue (RCR) (ROBOCUP RESCUE, 2010)
 - Simulador de resgate de vítimas em catástrofes

- Swarm Intelligence (SI)
 - Colônias de insetos

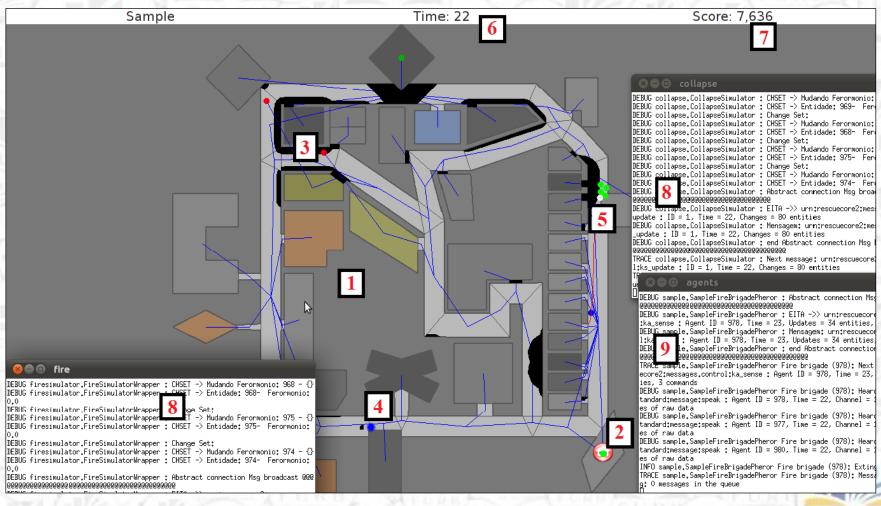
Objetivos do Trabalho

- Incorporar no RCR conceitos de SI, estigmergia
- Disponibilizar uma implementação de SMA de referência para demonstrar o funcionamento da extensão e realizar testes
- Disponibilizar um comparativo do desempenho do SMA desenvolvido com o desempenho de outros SMA's que não utilizam a extensão.

FUNDAMENTAÇÃO TEÓRICA

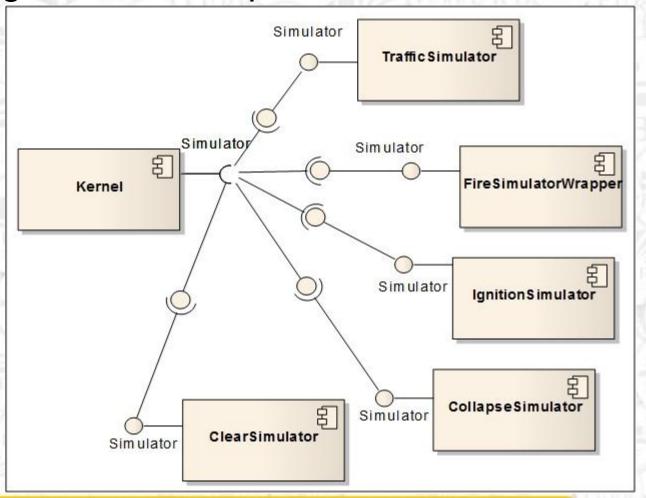
Sistemas Multiagentes

- Wooldridge (2002, p. 15): um agente é um sistema computacional que está situado em algum ambiente e que é capaz de ações autônomas neste ambiente, a fim de cumprir os seus objetivos designados.
- Características (JENNINGS, SYCARA, WOOLDRIDGE, 1998, p. 280):
 - Cada agente pode possuir diferentes competências
 - Cada agente pode possuir percepção limitada do ambiente
 - Computação é assíncrona
 - Inexistência de controle global/central
- Interações entre os agentes
 - Cooperação
 - Coordenação
 - Negociação



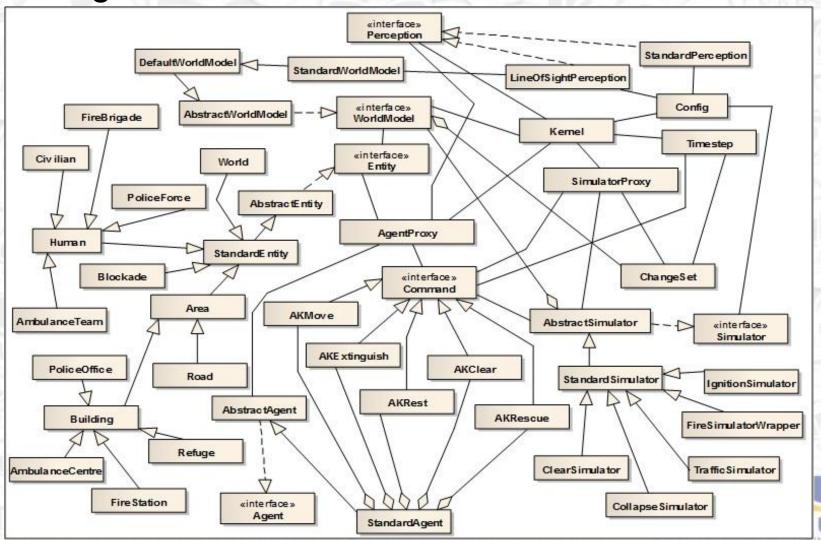
Simulador RoboCup Rescue

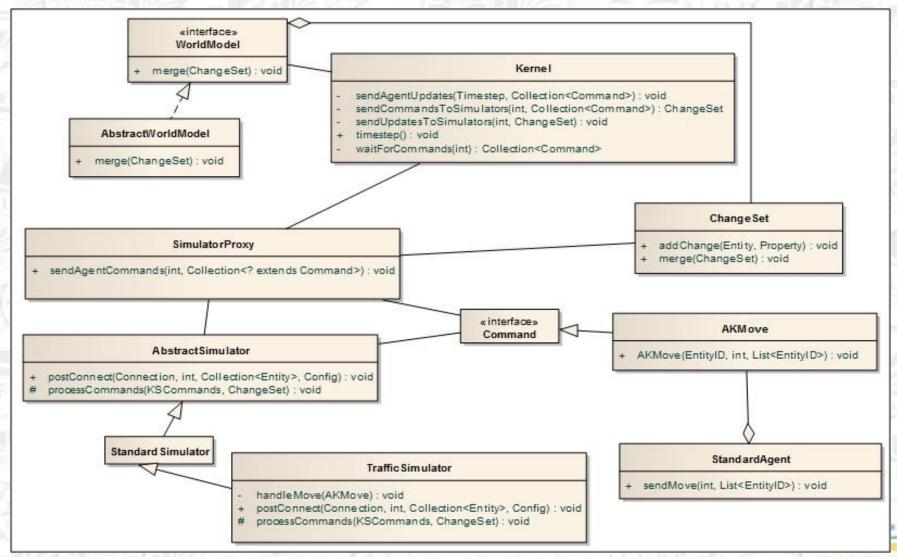
- Simulador de desastres (terremotos) e operações de resgate.
- Avaliar Abordagens de SMA
- Agentes de Campo:
 - Civis
 - Brigada de Incêndio
 - Força Policial
 - Time da Ambulância
- Score



Simulador RoboCup Rescue

Especificação do Simulador RCR


Diagrama de Componentes do Simulador



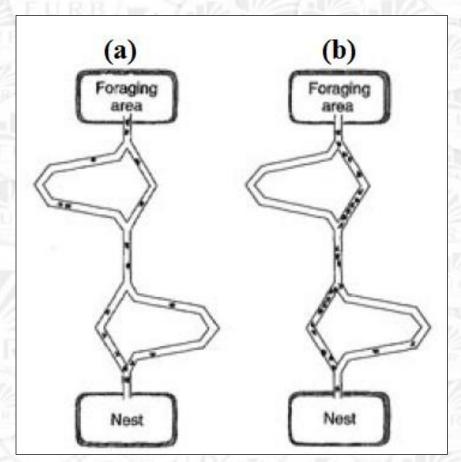
Especificação do Simulador RCR

Diagrama de classes do Simulador

Especificação do Simulador de tráfego

Swarm Intelligence

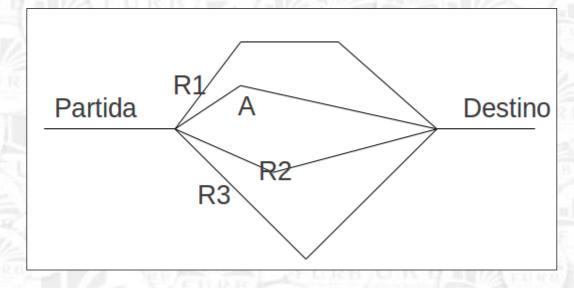
 Conceitos de Inteligência de enxames no desenvolvimento de SMA


 Estigmergia é a utilização do ambiente para comunicação entre indivíduos. Esta comunicação não ocorre por troca de mensagens diretamente, mas sim pelo ambiente, através de feromônios. (BONABEAU, THERAULAZ, DORIGO, 1999, p. 14)

Estigmergia

- Experimento
- Maior depósito no galho mais curto

 Evaporação do feromônio



Fonte: Bonabeau, Theraulaz e Dorigo (1999, p. 29).

Swarm Intelligence

Probabilidade de escolha

- P_A = probabilidade de escolha do caminho A
- F = quantidade de feromônio nos caminhos
- k = grau de atração ramo não marcado
- n = grau de não linearidade
- A = relativo ao caminho A
- R= representando os demais caminhos

$$P_A = \frac{(k + F_{A_i})^n}{(k + F_{A_i})^n + \sum_{R} (k + F_{R_i})^n}$$

Fonte: Bonabeau, Theraulaz e Dorigo (1999, p. 27).

Swarm Intelligence

Deposito de Feromônio

$$F_{R} = F_{R} + \sum_{i=0}^{m} \Delta(F_{i})$$

Fonte: Bonabeau, Theraulaz e Dorigo (1999, p. 27).

- Fr = quantidade de feromonio presente no caminho R
- m = quantidade de formigas
- Fi = feromônio depositado por cada formiga

Evaporação do Feromônio

$$F_{R} = (1 - p) * F_{R}$$

Fonte: Bonabeau, Theraulaz e Dorigo (1999, p. 27)

- Fr = quantidade de feromônio presente no caminho R
- p = coeficiente de evaporação

Contexto Atual do Tema

- Trabalho de Kassabalidis (2001)
 - Algoritmo de Roteamento utilizando SI
 - Baseado na exploração do ambiente pelas formigas
 - Agentes deixam rastro de feromônio (estigmergia)
 - Agentes decidem próximo salto influenciados pelo feromônio
 - Monta tabela de roteamento

Contexto Atual do Tema

- Santos (2009)
 - Implementado no RCR
 - Divisão do trabalho entre os agentes;
 - Comunicação por mensagens, SI para decisão;
 - Sugere implementação da comunicação por estigmergia.
 - Após isto, adaptação de seu algoritmo para o uso da estigmergia.

DESENVOLVIMENTO DA EXTENSÃO

Requisitos Principais

- Manter as funcionalidades presentes no simulador
 - Categorias de agentes, score, contagem de tempo

- Permitir ao usuário desenvolver um SMA de simulação no RCR, que utilize funções de SI
 - Utilizar estigmergia

Especificação

Diagrama de Casos de uso

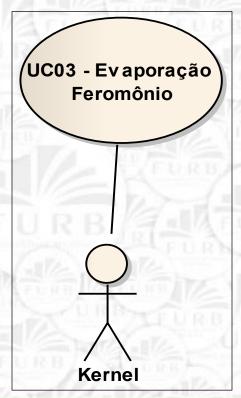
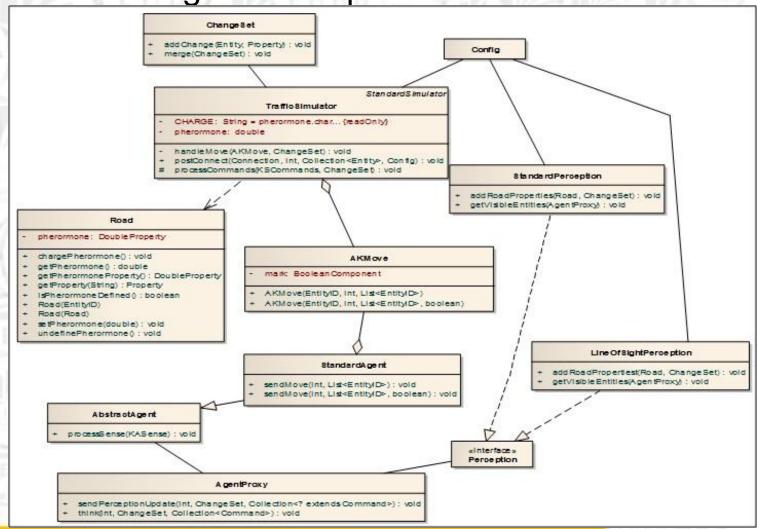
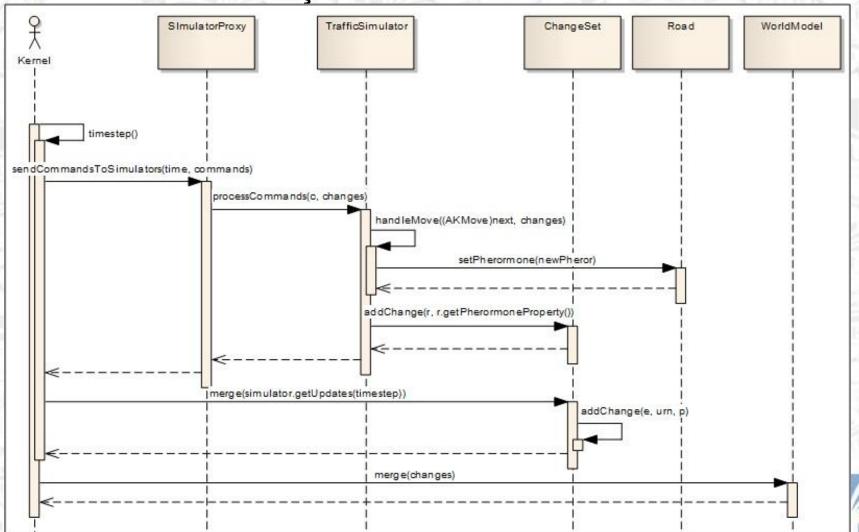
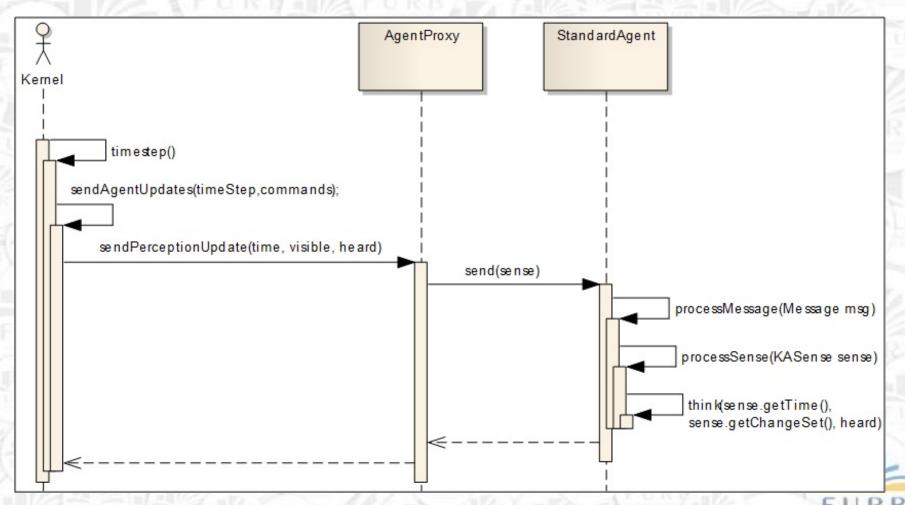

Diagrama de casos de uso executado pelo usuário.

Diagrama de Casos de uso

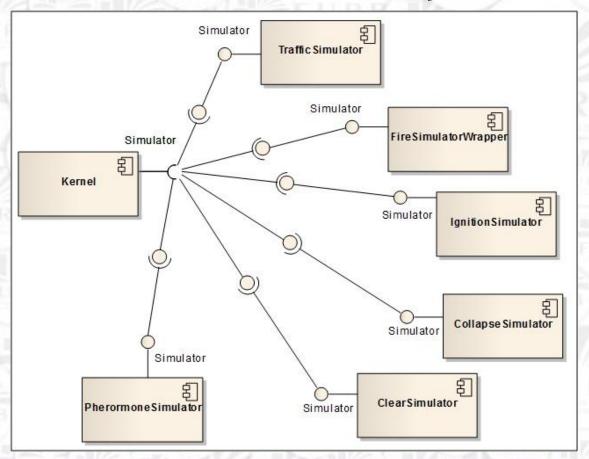

 Diagrama de casos de uso executado pelo kernel.


Especificação da Estigmergia

Permitir ao agente o depósito e leitura do feromônio

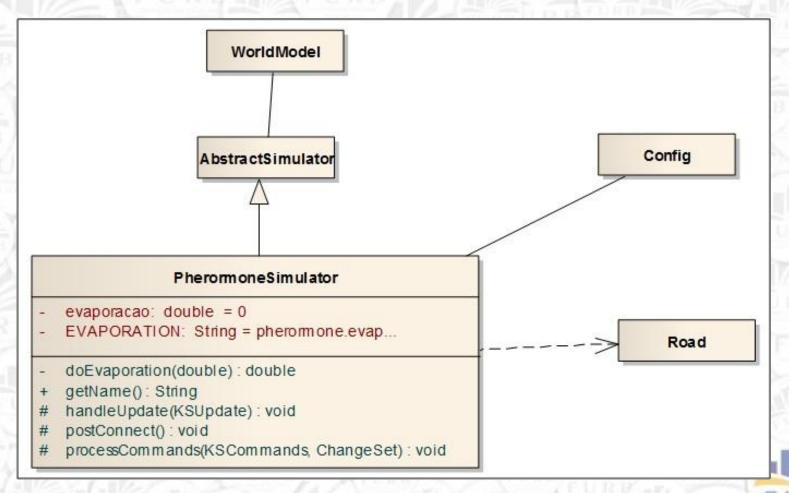

Especificação da Estigmergia

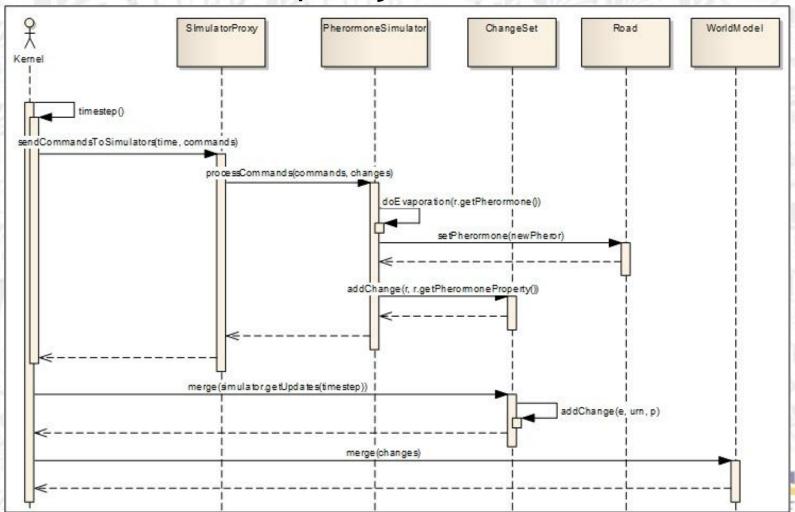
Processo de adição do Feromônio


Especificação da Estigmergia

Processo de atualização da percepção do agente

Especificação da Evaporação


- Criação do componente de Evaporação
- Permitir que ocorra a evaporação do feromônio


Especificação da Evaporação

Detalhes do componente de evaporação

Especificação da Evaporação

Processo de evaporação do feromônio

Implementação

Técnicas e Ferramentas Utilizadas

 Linguagem de Programação Java (Eclipse)

Sistema Operacional Ubuntu

Implementação do deposito de feromônio

Componente TrafficSimulator

$$F_R = F_R + \sum_{i=0}^{m} \Delta(F_i)$$

Fonte: Bonabeau, Theraulaz e Dorigo (1999, p. 27)

```
private void handleMove(AKMove move, ChangeSet changes) {
    /omitido código do simulador que é responsável por iterar sobre o
    /caminho recebido e definir a movimentação do agente por ele.
      if (move.getMark()) {
          //o método getEntity retorna o objeto identificado pela id
          // que representa do nodo do caminho atual (current)
7.
          Entity ent = model.getEntity(current);
8.
          if (ent instanceof Road) {
9
             Road r = (Road) ent;
             double pheror = r.getPherormone();
10.
             double newPheror = pheror + pherormone;
11.
12.
             r.setPherormone(newPheror);
             //Adiciona modificação ao changeSet.
13.
14.
             changes.addChange(r, r.getPherormoneProperty());
15.
16.
17.
```

Implementação da Evaporação

Componente PherormoneSimulator

$$F_R = (1 - p) * F_R$$

Fonte: Bonabeau, Theraulaz e Dorigo (1999, p. 27)

```
//método chamado pelo kernel.
   protected void processCommands(KSCommands c, ChangeSet changes) {
        //Lê as ruas do mundo
         Collection<StandardEntity> e = model.getEntitiesOfType(StandardEntityURN.ROAD);
         for (StandardEntity next : e) {
5.
              if (next instanceof Road) {
                      Road r = (Road) next;
                      //para cada rua evapora quantidade de feormonio.
                     double newPheror = doEvaporation(r.getPherormone());
10.
                     r.setPherormone(newPheror);
                      //Adiciona modificação ao changeSet.
11.
12.
                      changes.addChange(r, r.getPherormoneProperty());
13.
14.
15.
```

```
private double doEvaporation(double pherormone) {
    return pheror = pherormone - (pherormone*(evaporacao/100));
}
```

Operacionalidade

Definição agente Bombeiro

- Semelhança com formigas;
- Busca incêndios;
- Retorno ao refúgio.
- SwarmFireBrigade

Definição agente Bombeiro

```
se não está cheio de água e esta no refúgio então
       enche áqua
       retorna
fimse
se está sem água então
       move para refúgio mais próximo marcando o caminho
       retorna
fimse
procura incêndio no campo de visão
se está perto o bastante então
       apaga incêndio
       retorna
senao
       move para apagar
       retorna
fimse
se não achou nada então
       move usando estigmergia.
       retorna
fimse
```

Implementação do agente Bombeiro

Busca de caminhos utilizando a probabilidade

```
List<EntityID> pathpheror = search.pherormoneSearch(me().getPosition(), model);
```

Leitura da propriedade

```
Road r = (Road) model.getEntity(neighbour);
double ferormonio = r.getPherormone ();
```

Depósito de feromônio

```
sendMove(time, path, true);
```


Mapa Kobe4 (source fourge, 2003)

- Constantes:
 - k = 0
 - n=2
 - limite= 80000

• Comprovação da utilização do feromônio para escolha de caminho pelo agente $P_A = \frac{\left(k + F_{A_i}\right)^n}{\left(k + F_{A_i}\right)^n + \sum_{R} \left(k + F_{R_i}\right)^n}$

```
1. Inicio Busca.
2. Nó Inicial: 266
3. Iterando sobre os vizinhos de: 266: [279, 269]
4. Nós que já passou: []
5. Cálculo do Divisor:
6. Rua: 279 -> Feromônio: 0.5011297878809273
7. Rua: 269 -> Feromônio: 0.0
8. Divisor Calculado: 0.2511310643015832
9. Nós Rejeitados: []
10. Probabilidade individual (Para cada Nó):
11. Probabilidade Rua: 279: 1.0
12. Probabilidade Rua: 269: 7.819173592005166E-90
13. Lista probabilidades de cada nó:
14.[[ 279 ; 1.0 ], [ 269 ; 7.819173592005166E-90 ]]
15. Aleatório (determina a escolha): 0.03452323283660941
16.Contador: 0.0
17.Escolheu o nodo - > Road (279)
18. Distância até a rua 279 : 20572. 1968 6858 9413
```

- Quantidade de feromônio depositado: 1, 5, 10
- Percentual de evaporação utilizado: 0, 25, 50, 75, 100

1 (uma) unidade de feromônio depositada

Quantidade de	Percentual de	Score
Bombeiros	Evaporação	
20	0%	0,205543138
20	25%	0,196124823
20	50%	0,206619558
20	75%	0,223827752
20	100%	0,193934737
40	0%	0,356805741
40	25%	0,263814039
40	50%	0,286295404
40	75%	0,269387903
40	100%	0,258381419

5 (cinco) unidades de feromônio depositada

Quantidade de	Percentual de	Score
Bombeiros	Evaporação	
20	0%	0,206738148
20	25%	0,217581256
20	50%	0,213188776
20	75%	0,204559179
20	100%	0,185567313
40	0%	0,236505086
40	25%	0,275826638
40	50%	0,334192962
40	75%	0,306718365
40	100%	0,309240701

- Quantidade de feromônio depositado: 1, 5, 10
- Percentual de evaporação utilizado: 0, 25, 50, 75, 100

10 (dez) unidades de feromônio depositado

Quantidade de Bombeiros	Percentual de Evaporação	Score
20	0%	0,203687695
20	25%	0,190899442
20	50%	0,212238217
20	75%	0,195587738
20	100%	0,218182847
40	0%	0,317462211
40	25%	0,284331181
40	50%	0,323702942
40	75%	0,355580613
40	100%	0,262838562

SampeFireBrigade			
Quantidade	Score		
de	FUR		
Bombeiros	D D ITE		
20	0,226364196		
40	0,239583061		

Melhores Resultados

Sampefirebrigade	1 (uma) unidade de feromônio depositado	5 (cinco) unidades de feromônio depositado	10 (dez) unidades de feromônio depositado
40 agentes	40 agentes	40 agentes	40 agentes
sem evaporação	0% de evaporação	50% de evaporação	75% de evaporação
0,239583061	0,356805741	0,334192962	0,355580613

- Melhor resultado obtido com time de 40 agentes.
 - Quantidade maior de feromônio sendo depositado
 - Necessidade de maior evaporação para não prejudicar desempenho

- Kassabalidis(2001):
 - Sem determinação de agente especifico para explorar a rota;
 - Envio de pacotes, calculo de atraso.
- Santos(2009):
 - Sugere o desenvolvimento de uma solução que substitua a comunicação por troca de mensagens entre os agentes do RCR.

Conclusão

- Disponibilizado o uso da estigmergia pelos agentes no simulador RCR;
- Estudo aprofundando do funcionamento do simulador;
- Limitações
 - Limitação em testes com outros agentes não efetuados;
 - Necessidade de possuir o simulador alterado para utilizar a extensão

Extensões

 Estudo e adaptação do algoritmo eXtreme-Ants de Santos (2009) para a utilização dos recurso de SI disponibilizados pela extensão.

 Análise e implementação de outros agentes utilizando os recursos oferecidos pela extensão.

Referências

- BONABEAU, Eric; THERAULAZ, Guy; DORIGO, Marco. Swarm intelligence: from natural to artificial systems. New York: Oxford University Press, 1999. 307 p.
- JENNINGS, Nicholas R.; SYCARA, Katia; WOOLDRIGE, Michael J. A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems, [S.I.], n.1, p. 275–306b, 1998.
- KASSABALIDIS, Ikas et al. Swarm intelligence for routing in communication networks. In: GLOBAL TELECOMMUNICATIONS CONFERENCE, 2., 2001, San Antonio. Proceedings... Seattle: Washigton University, 2001. p. 3613–3617. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.8398 &rep=rep1&type=pdf>. Acesso em: 27 mar. 2011.

Referências

- ROBOCUP RESCUE. Tokio, 2006. Disponível em: http://www.robocuprescue.org/. Acesso em: 17 mar. 2011.
- SANTOS, Fernando. eXtreme-Ants: algoritmo inspirado em formigas para alocação de tarefas em extreme teams. 2009. 69 f. dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Computação, Universidade Federal do Rio Grande do Sul, Porto Alegre.
- SOURCE FORGE. Robocup Rescue Simulation Project. [S.I.], 2003. Disponível em: http://sourceforge.net/projects/roborescue/> Acesso em: 18 fev. 2011.
- WOOLDRIDGE, Michael J. An introduction to multiagent systems. New York: John Wiley. 348p.

