Ferramenta para criação e execução visual de algoritmos em grafos

Susan Braun

Paulo César Rodacki Gomes – Orientador

Roteiro da apresentação

- Introdução
 - Objetivos do trabalho
- Fundamentação teórica
 - Principais conceitos
 - Trabalhos correlatos
- Especificação
 - Requisitos principais
 - Técnicas e ferramentas utilizadas

Roteiro da apresentação

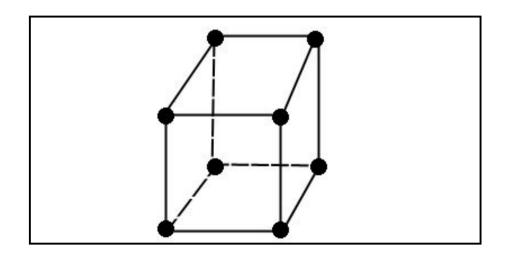
- Implementação
 - Ferramentas utilizadas
 - Operacionalidade do Editor Visual de Grafos (EVG)
 - Resultados e discussão
- Conclusão
 - Extensões

Introdução

- Amplo campo de problemas que requerem sistemas complexos
- Modelagem dos problemas em forma de grafo
- Motivação para muito pesquisadores
- Os estudos devem ser focados nos algoritmos

Introdução

Objetivos do trabalho

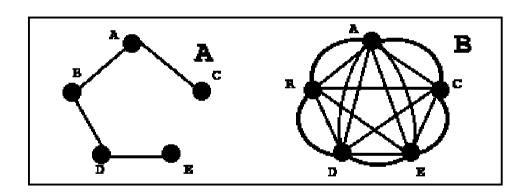

- Desenvolver uma ferramenta que permita criar grafos e desenvolver algoritmos, bem como visualizar a execução dos mesmos
 - Disponibilizar um editor para criação e compilação de algoritmos em Java
 - Disponibilizar uma interface gráfica para criação e visualização de grafos
 - Disponibilizar a execução e visualização dos algoritmos sobre os grafos

Fundamentação teórica Principais conceitos

• A Teoria dos Grafos é definida como uma área da matemática discreta que possibilita que problemas do mundo real sejam modelados como conjuntos finitos contendo objetos e relacionamentos

Fundamentação teórica Principais conceitos

 Um grafo G = (V, E) é composto por dois conjuntos V e E, onde V representa um conjunto de nodos e E representa um conjunto de arestas



Fundamentação teórica

Principais conceitos

- Utilização de parâmetros quantitativos na solução de problemas:
 - Ordem
 - Tamanho
 - Densidade

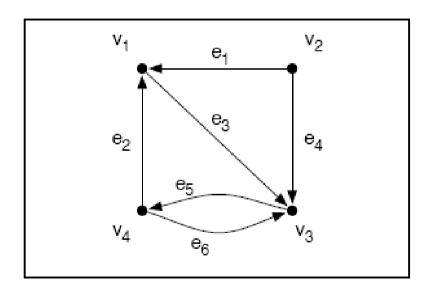
Fundamentação teórica Principais conceitos

- Um algoritmo sequência finita de passos para solução de um problema
- Dentre os principais algoritmos da teoria dos grafos destacam-se os de busca, que servem como base para construção de algoritmos mais especializados

Fundamentação teórica Trabalhos correlatos

- Ferramenta para representação gráfica do funcionamento de algoritmos aplicados em grafos (HACKBART, 2008)
- Grafos (VILLALOBOS, 2006)
- RoxGT (SANGIORGI, 2006)

Especificação


Requisitos principais

Requisitos Funcionais (RF)						
RF01	Permitir ao usuário criar e salvar novos algoritmos e editar algoritmos já existentes					
RF02	Disponibilizar a linguagem Java para o desenvolvimento dos algoritmos					
RF03	Compilar os algoritmos criados					
RF04	Exibir os erros de compilação encontrados					
RF05	Disponibilizar uma interface gráfica para criação de novos grafos					
RF06	Exibir as propriedades dos grafos criados					
RF07	Executar os algoritmos criados					
RF08	Exibir a execução do algoritmo sobre o grafo através da coloração dos vértices e arestas determinadas nos algoritmos					
RF09	Exibir em forma de texto o resultado do algoritmo criado					
RF10	Permitir salvar e abrir os grafos criados					
RF11	Disponibilizar uma função para gerar grafos automaticamente					

Fundamentação teórica

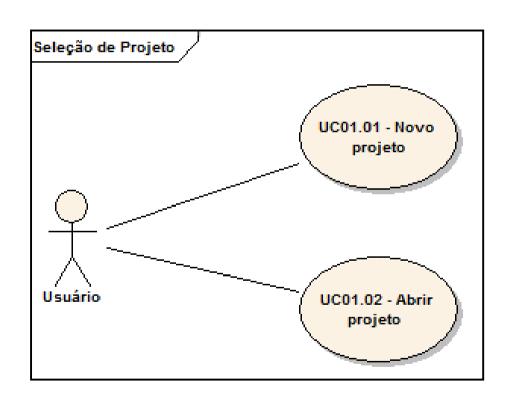
Principais conceitos

• Um dígrafo é um grafo com arestas que um único sentido

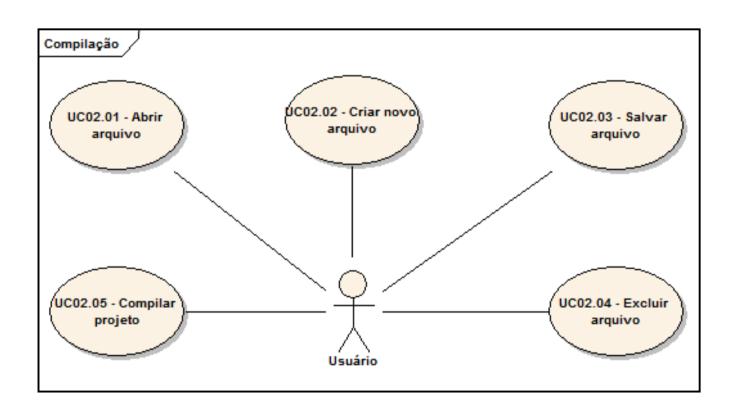
Fundamentação teórica

Principais conceitos

- Utilização de atributos na solução de problemas:
 - Peso do vértice
 - Cor do vértice
 - Custo da aresta
 - Descrição do vértice

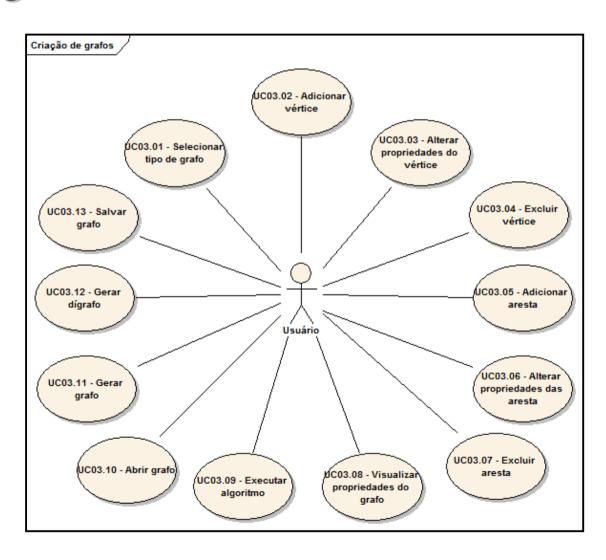

Especificação Requisitos principais

Requisitos Não Funcionais (RNF)					
RNF01	Ser implementada na linguagem Java SE 6.0				
RNF02	Utilizar a biblioteca <i>Java Open Graphics Library</i> (JOGL) para interface gráfica				
RNF03	Utilizar a ferramenta <i>Another Neat Tool</i> (ANT) para compilar e gerar o <i>bytecode</i> dos algoritmos criados				
RNF04	Utilizar a biblioteca Java Reflection para instanciar os algoritmos criados e compilados em tempo de execução				


Especificação Técnicas e ferramentas utilizadas

- *Unified Modeling Language* (UML)
- Enterprise Architect
- Diagrama de caso de uso
- Diagrama de classes

Especificação Diagrama de caso de uso



Especificação Diagrama de caso de uso

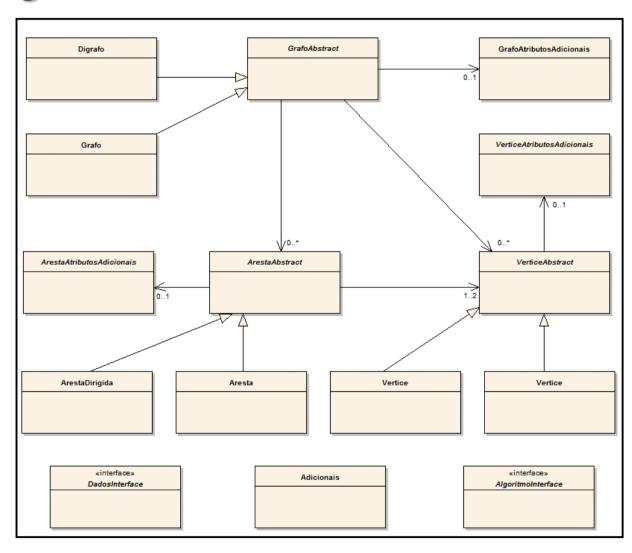
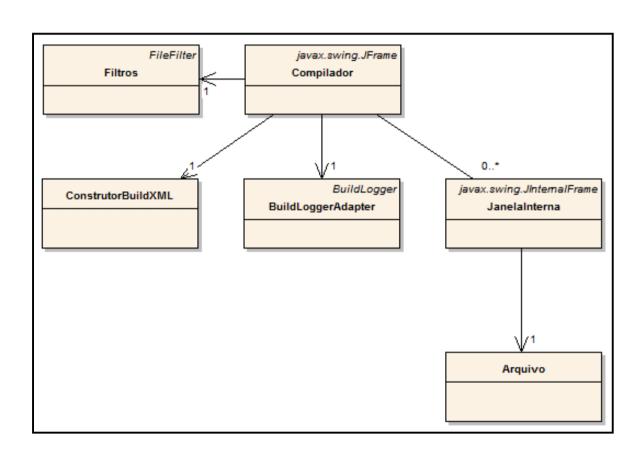
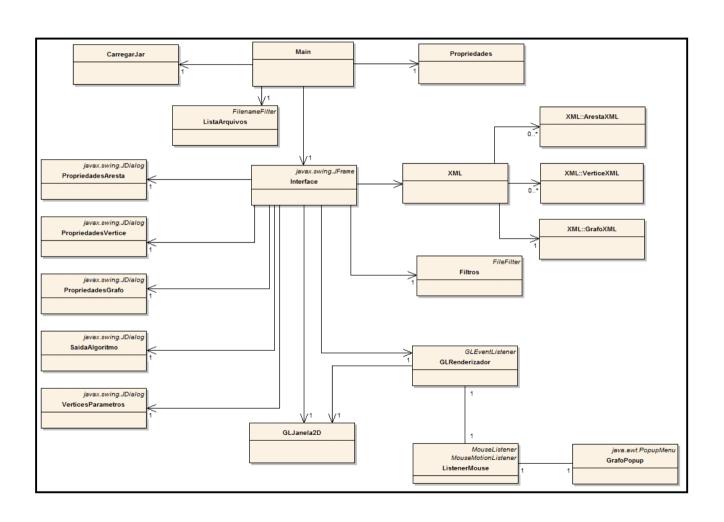

Especificação

Diagrama de caso de uso



Especificação


Diagrama de classe

Especificação Diagrama de classe

Especificação Diagrama de classe

Implementação Ferramentas utilizadas

- Java Open Graphics Library (JOGL)
 - Para construção da interface gráfica
- Another Neat Tool (ANT)
 - Para compilação em tempo de execução
- Document Object Model (DOM)
 - Para criação dos arquivos eXtensible Markup Language (XML)

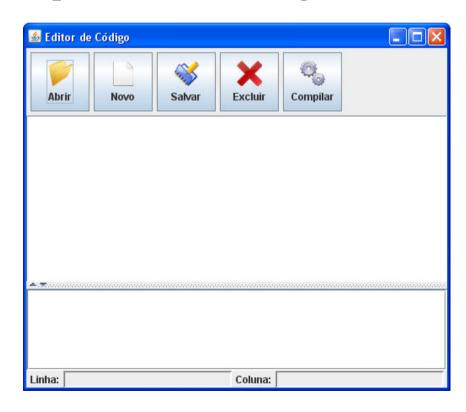
Implementação Ferramentas utilizadas

- Graphml
 - Formato de arquivo para grafos baseado em XML
- Java Reflection
 - Para instanciar os algoritmos criados na ferramenta

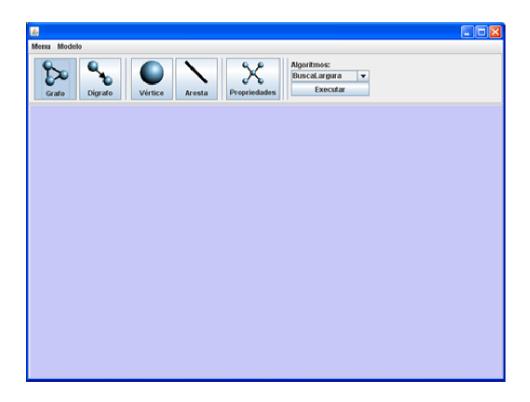

Implementação

Operacionalidade do EVG

• Tela inicial do sistema



• Criação de novo projeto


Implementação Operacionalidade do EVG

• Interface para criação de algoritmos

Implementação Operacionalidade do EVG

• Interface de criação de grafos

Implementação Resultados e discussão

	HACKBART 2008	VILLALOBOS 2006	SANGIORGI 2006	EVG 2009
Criação visual de grafos	Sim	Sim	Sim	Sim
Algoritmos disponíveis p/ execução	Sim	Sim	Não	Não
Criação de novos algoritmos	Não	Não	Sim	Sim
Visualizar propriedades do grafo	Não	Sim	Sim	Sim
Permite salvar o grafo criado	Não	Sim	Não	Sim
Multiplataforma	Não	Não	Não	Sim
Coloração de vértices e arestas	Não	Sim	Não	Sim

Conclusão

- Auxílio no ensino de grafos
- Possibilidade de uso dos algoritmos desenvolvidos em outras aplicações
- Multiplataforma
- Limitação de somente um grafo
- Limitações na linguagem Java

Conclusão Extensões

- Possibilidade de criar mais de um grafo
- Possibilidade de pausa na execução do algoritmo
- Possibilidade de execução passo a passo do algoritmo

Referências

HACKBARTH, Rodrigo. Ferramenta para representação gráfica do funcionamento de algoritmos aplicados em grafos. 2008. 61 f. Trabalho de Conclusão de Curso (Bacharelado em Ciências da Computação) - Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau.

SANGIORGI, Ugo B. **RoxGT**: um framework de código aberto para o ensino, modelagem e análise de grafos. 2006. 53 f. Trabalho de Conclusão de Curso (Bacharelado em Ciências da Computação) - Faculdade Ruy Barbosa, Salvador. Disponível em: http://www.roxgt.org/documentacao_old/Monografia-UgoBragaSangiorgi.pdf >. Acesso em: 13 mar 2009.

VILLALOBOS, Alejandro R. Grafos: herramienta informática para el aprendizaje y resolución de problemas reales de teoría de grafos. In: CONGRESO DE INGENIERÍA DE ORGANIZACIÓN, 10., 2006, Valencia. **Anais...** Valencia: [s.n.] 2006. p. 1-10. Disponível em: http://personales.upv.es/arodrigu/IDI/Grafos.pdf Acesso em: 14 mar. 2009.