A visualização de consultas de um Sistema de Informação Gerencial em um Sistema de Informação Geográfica avançando a Inteligência de Negócios

Rodrigo Alves

Orientador

Prof. Marcel Hugo

Roteiro da Apresentação

- Introdução
- Fundamentação Teórica
- Desenvolvimento
- Resultados e Discussão
- Conclusão
- Limitações e Extensões
- Referencias Bibliográficas

Introdução

- Desenvolvimento de uma nova funcionalidade que integre as informações dos sistemas gerenciais com as informações geográficas.
- A funcionalidade será aplicada ao Sistema de Informação Gerencial (SIG), utilizado por uma cooperativa de consumo.
- As informações geográficas serão visualizadas no mapa da cidade de Blumenau.
- A visualização do mapa será feita através do componente activeX MapWinGIS.

Introdução

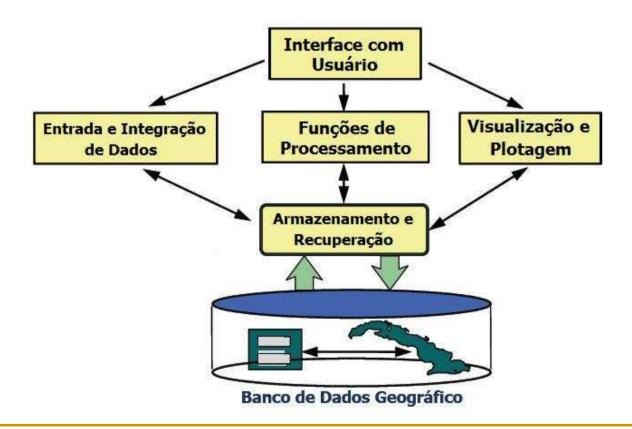
Objetivos do trabalho

- desenvolver uma nova funcionalidade que integre os dados do SIG com o GIS.
 - integrar o GIS e SIG de maneira transparente ao usuário final.
 - gerar mapas temáticos no GIS através das pesquisas efetuadas no SIG.
 - disponibilizar uma interface para interação do usuário com o mapa gerado pelo GIS.

Inteligência de Negócios (IN)

- "vasta categoria de tecnologia e programas aplicativos utilizados para extrair, armazenar, analisar e transformar grandes volumes de dados [...] onde há produção sistemática de informação gerencial" (TRONTO, 2006).
- "é o conhecimento e previsão dos ambientes interno e externo à empresa, orientando as ações gerenciais, tendo em vista a obtenção de vantagens competitivas" (Herring, 1997 apud WANDERLEY, 1996, p. 191).

Sistema de Informação Gerencial (SIG)


- auxiliar a organização a atingir suas metas.
- prover informações do planejamento e gerenciamento da organização, utilizando-as no processo decisório da empresa.
- permitir controle, organização e planejamento mais eficiente e eficaz.

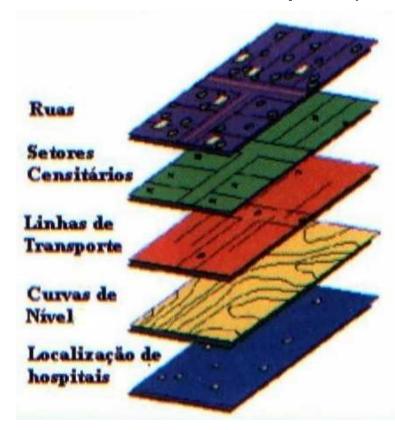
Sistema de Informação Geográfica (GIS)

- usado para armazenar, analisar e manipular dados geográficos (CÂMARA, 1996, p. 21).
- idéia de sobrepor e combinar diversos tipos de dados em um mesmo mapa (PAREDES, 1994, p. 19).
- os dados representam um modelo do mundo real, permitindo realizar simulações específicas (PAREDES, 1994, p. 19).

Fundamentação Teórica – GIS

Componentes de um GIS (CÂMARA,1996, p. 22)

Fundamentação Teórica - GIS


Organização dos dados (CARVALHO, 2000, p 46)

em planos de informação (layers).

cada *layer* com suas características gráficas espacialmente relacionadas.

interligadas por um sistema de coordenadas comum.

organizadas conforme o tema de interesse.

Integração ao GIS – MapWinGIS

- surgiu através do projeto de doutorado de Ames (2008);
- deficiência encontrada no GIS utilizado;
- disponibilizado em 2002 e 2005 pelo mapwindow.org;
- componente activeX de código livre;
- desenvolver funcionalidades personalizadas de mapeamento;
- ambiente Visual Basic, Borland Delphi, Microsoft Access;
- visualização e manipulação de shapefiles (zoom, pan, labels);
- componente disponibilizado após instalação no ambiente de programação;
- disponibilizando propriedades e procedimentos.

Fundamentação Teórica - MapWinGIS

Instalação

- Primeira forma
 - no Delphi importar o ActiveX utilizando o arquivo MapWinGIS.ocx disponibilizado;
 - registrar a classe MapWinGIS no Windows.
- Segunda forma
 - executar somente o instalador MapWinGIS460CXOnly.exe
- Após instalar, no Delphi será disponibilizado o componente MapWinGIS na paleta ActiveX.

Map (MapWinGIS_TLB)

Desenvolvimento

- Requisitos
- Caso de Uso
- Diagrama de Atividades
- Diagrama de Classe
- Shapefiles
- Integração
- Utilização do MapWinGIS

Desenvolvimento – Principais Requisitos

- disponibilizar uma interface utilizando um componente GIS para permitir a visualização do mapa (Requisito Funcional – RF);
- permitir transpor a pesquisa efetuada no SIG a interface do GIS (RF);
- permitir a interface do GIS efetuar manipulações (RF);
- disponibilizar opção para salvar em arquivo o mapa gerado (RF);
- utilizar o componente MapWinGIS para efetuar manipulações no mapa (Requisito Não-Funcional – RNF);
- ser implementado utilizando o ambiente Delphi 7.0 (RNF).

Desenvolvimento - Caso de Uso

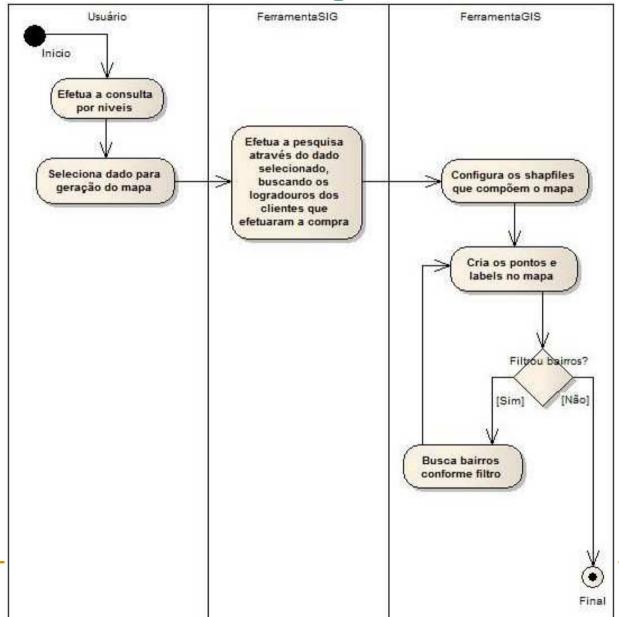
UC01 - Visualizar no mapa a consulta do SIG

Sumário: O usuário deseja que a consulta de vendas por níveis do SIG seja visualizada no mapa de Blumenau.

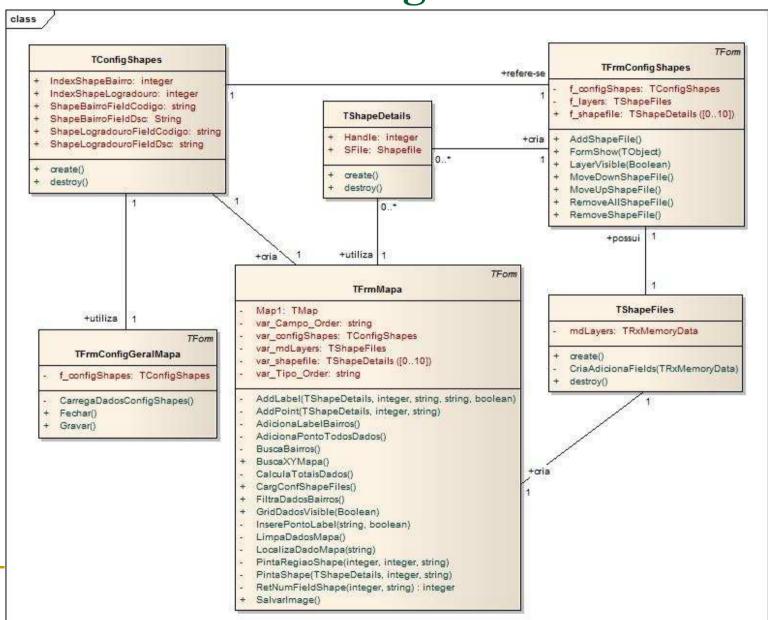
Ator primário: Usuário.

Pré-condição: Tela para consulta de vendas esteja aberta no SIG

Fluxo principal:

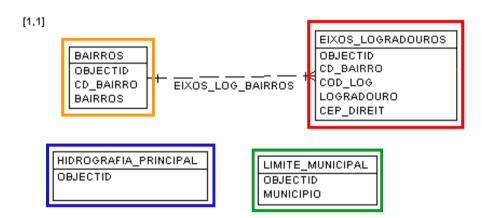

- O usuário efetua a pesquisa das vendas por níveis.
- 2. O usuário seleciona o dado da consulta que pretende visualizar no mapa.
- A nova funcionalidade efetua a pesquisa através do dado selecionado, buscando os logradouros dos clientes que efetuaram a compra.
- A nova funcionalidade apresenta a interface com o mapa gerado através da pesquisa, juntamente com os logradouros dos clientes que estão destacados no mapa.

Fluxo alternativo: Alteração dos dados visualizados no mapa.

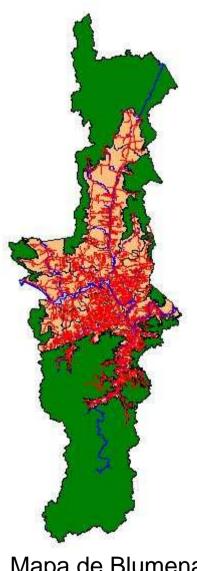

a) Depois do passo 4 há possibilidade de alterar a visualização dos dados no mapa, filtrando por bairros encontrados na pesquisa efetuada no passo 3.

Pós-condição: Mapa da consulta exibido com sucesso.

Desenvolvimento - Diagrama de Atividades



Desenvolvimento – Diagrama de Classe



Desenvolvimento – Shapefiles

Corresponde de três arquivos: ".shp", ".dbf " e ".shx".

Shapefiles (Prefeitura Municipal de Blumenau)

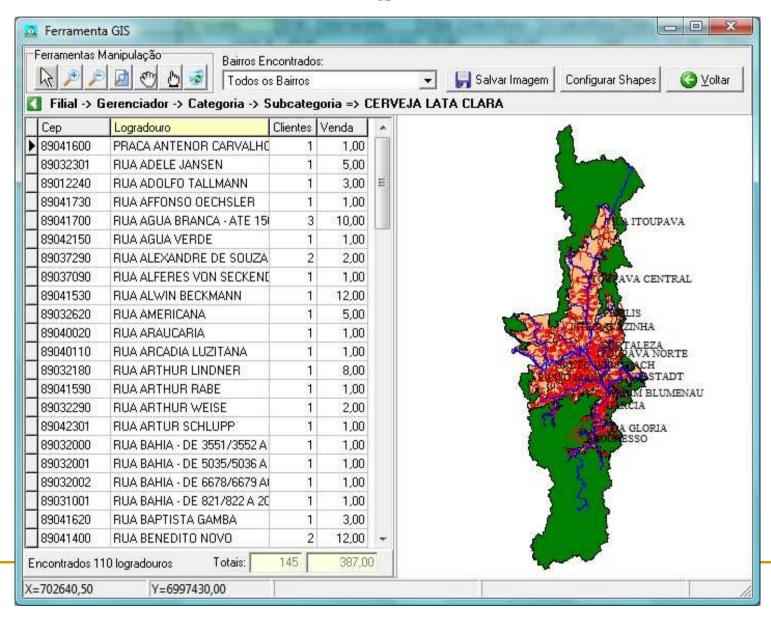
Mapa de Blumenau

Desenvolvimento – Integração SIG x GIS

- O SIG reúne os ceps, os logradouros, as quantidades de clientes e as vendas realizadas, através da pesquisa realizada;
- Atribui os dados encontrados a uma tabela de memória para utilização da interface GIS;
- A interface GIS gera o mapa, procurando os shapes através dos dados existentes na tabela.
- A interface GIS disponibiliza ao usuário os dados para futuras manipulações.

Desenvolvimento - Utilização MapWinGIS

Código fonte de criação e configuração do shapefile


```
f shapefile[v idx layer] := TShapeDetails.create; Cria a objeto TShapeDetails
with (f shapefile[v idx layer]) do
begin
 SFile := CoShapefile.Create;
                                        Cria e carrega o shapefile
 SFile.Open(OpenDialog1.FileName, nil
 Handle := f mapwindow.AddLayer(f shapefile[v idx layer].SFile, True);
f mapwindow.LayerFont(f shapefile[v idx layer].Handle, 'Times New Roman', 8);
f mapwindow.LayerLabelsScale[f shapefile[v idx layer].Handle] := False;
f mapwindow.LayerLabelsOffset[f shapefile[v idx layer].Handle] := 8;
f mapwindow.LayerLabelsShadow[f shapefile[v idx layer].Handle] := False;
f mapwindow.LayerLabelsVisible[f shapefile[v idx layer].Handle] := True;
f mapwindow.UseLabelCollision[f shapefile[v idx layer].Handle] := True;
f mapwindow.ShapeLaverLineWidth[f shapefile[v idx laver].Handle] := 1.0;
 Adiciona o shapefile criado ao componente
 TMap retornando seu handle
 Configurações do shapefile: fonte e tamanho dos labels, sobra nos
 labels, colisão dos labels e espessura da linha de contorno
```

Desenvolvimento – Utilização MapWinGIS

Código fonte para manipulação do shapefile

```
procedure TFrmMapa.AdicionaLabelBairros;
var
 v IdShape, v field num : integer;
 v str regiao : string;
 v shapefile : IShapefile;
begin
 v shapefile := var shapefile[var configShapes.IndexShapeBairro].SFile;
                  1 to w shanefile NumShanes - 1 do
         procedure TFrmMapa.AdicionaPoint(p shape : TShapeDetails; p id: integer; p color : string);
  begi
          var
                                                                                                       sc);
          hDraw : Longint;
          v xCenter, v yCenter : Double;
          begin
                                                                                                       False);
          //Seta para usar as coordenadas do mapa e não da tela
          hDraw := Map1.NewDrawing(dlSpatiallyReferencedList);
          v xCenter := p shape.SFile.Shape[p id].Point[p shape.SFile.numPoints[p id] div 2].x;
          v yCenter := p shape.SFile.Shape[p id].Point[p shape.SFile.numPoints[p id] div 2].y;
xMax
xMin
          Map1.DrawCircle(v xCenter, v yCenter, 4, StringToColor(p color), True);
yMin := p shape.SFile.QuickExtents(p id).yMin;
v rotation := 0;
v xCenter := (xMax + xMin) / 2;
v yCenter := (yMax + yMin) / 2;
Map1.AddLabelEx(p shape.SHandle, p str, StringToColor(p color), v xCenter, v yCenter, hjCenter, v rotation);
```

Desenvolvimento - Operacionalidade

Resultados e Discussões

- Dificuldade na aquisição dos shapefiles;
- Atualização dos dados dos shapefiles para integração;
- MapWinGIS estável para implementação da interface;

Comparação entre os softwares GIS				
	Grátis	Código livre	Windows	Web
ESRI	Visualização	Não	Sim	Sim
Intergraph (GeoMedia)	Não	Não	Sim	Sim
MapWindow (MapWinGIS)	Sim	Sim	Sim (activeX)	Não
SPRING	Sim	Não	Sim	Não
TerraLib, TerraView	Sim	Sim	Sim	Não
gvSIG	Sim	Sim	Java	Não
MapInfo	Visualização	Não	Sim	Sim

Conclusão

- Os objetivos propostos no desenvolvimento deste trabalho foram alcançados.
 - A funcionalidade consegue transpor a pesquisa visualizada no SIG para a interface GIS.
 - Gera mapas temáticos através dos dados pesquisados.
 - Efetua manipulações no mapa gerado.

Limitações e Extensões

Limitações

- geração do mapa somente a partir da consulta de vendas por níveis do SIG;
- visualização do mapa com dados pertencente a cidade de Blumenau.

Extensões

- visualização e alteração do metadados dos shapefiles;
- integração utilizando outro ambiente de programação;
- cálculo de distância entre shapes;
- estudo aprofundado do componente MapWinGIS.

Referências Bibliográficas

- AMES, Daniel P. MapWindow GIS open source project. [Idaho?], 2008. Disponível em: http://www.mapwindow.org. Acesso em: 3 set. 2008.
- CÂMARA, Gilberto et al. Anatomia de sistemas de informação geográfica. Campinas: UNICAMP, 1996.
- CARVALHO, Marília S.; PINA, Maria F.; SANTOS, Simone M. Conceitos básicos de sistemas de informação geográfica e cartografia, aplicados à saúde. Brasília: Organização Panamericana de Saúde, 2000.
- PAREDES, Evaristo A. Sistema de informação geográfica: princípios e aplicações (geoprocessamento). São Paulo: Érica, 1994.
- TRONTO, Iris F. B.; ARAUJO, Ana C.; SILVA, José D. S.; SANT´ANNA, Nilson. Business Intelligence: Inteligência nos Negócios. São Paulo. 2006. http://hermes2.dpi.inpe.br:1905/col/lac.inpe.br/worcap/2003/10.31.15.48/doc/Artigo Workap3.pdf. Acesso em: 15 abril 2009.
- WANDERLEY, Ana V. M. Um instrumento de macropolítica de informação. Concepção de um sistema de inteligência de negócios para gestão de investimentos de engenharia, Brasília, v. 29, n. 2, p. 190-199, mai/ago 1999. Disponível em: < http://www.scielo.br/scielo.php?pid=S0100-19651999000200011&script=sci_arttext&tlng=in >. Acesso em: 20/04/2009.