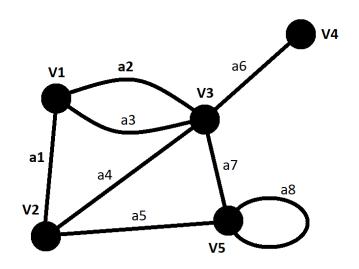
Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Trabalho de Conclusão de Curso II – 2018/2

FURB Graphs: uma ferramenta de apoio ao aprendizado para a disciplina de teoria dos grafos

Acadêmico: Gustavo Bittencourt

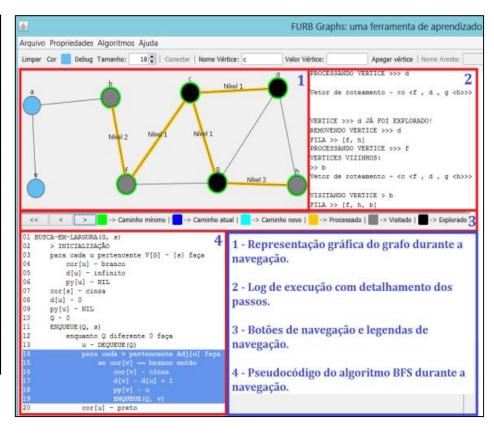

Orientador: Prof. Aurélio Faustino Hoppe

Roteiro

- Introdução
- Protótipo Atual
- Objetivos
- Fundamentação Teórica
- Trabalhos Correlatos
- Requisitos
- Operacionalidade, Especificação e Implementação
- Resultados
- Conclusões e Sugestões
- Agradecimentos

Introdução

- Aumento da presença de tecnologias nas instituições de ensino superior
- Carência de ferramentas em algumas disciplinas, ou as que existem não são completas
- Teoria dos grafos: relações entre os objetos de um conjunto
- Dificuldade em representar, visualizar e analisar grafos



Protótipo atual

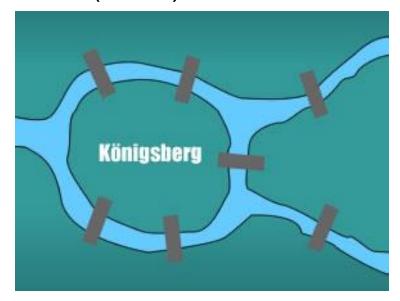
FURB Graphs: uma ferramenta de apoio ao aprendizado para a disciplinas de teoria dos grafos (Bernardes, 2016)

características / trabalhos relacionados	Bernardes (2016)
Possui algoritmos pré- definidos	>
Inclusão de novos algoritmos	×
Matriz de adjacência	×
Armazenar e carregar grafos	②
Acompanhamento passo a passo dos algoritmos	•
Disponibiliza material teórico	×

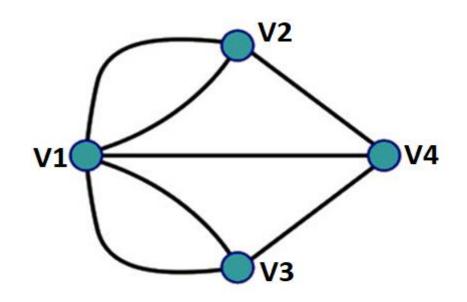
Trabalho proposto

Objetivo geral:

Reestruturar a ferramenta FURB Graphs, desenvolvida por Bernardes (2016), permitindo que a ferramenta possa ser usada como facilitadora do aprendizado do conteúdo da disciplina de Teoria dos grafos


Trabalho proposto

Objetivos específicos:


- I. disponibilizar uma interface para manipulação de grafos, através da criação de vértices e arestas e a visualização das matrizes de adjacência e custo
- II. disponibilizar um mecanismo de acompanhamento passo a passo da execução dos algoritmos (DFS, BFS, Dijkstra, Prim e Kruskal)

Teoria dos Grafos

- Surgimento século XVIII (para matemática é recente)
- Estudar objetos combinatórios (grafos)
- Termo grafo: James Joseph Sylvester (1877)
- Publicação: Euler (1736), Pontes de Königsberg

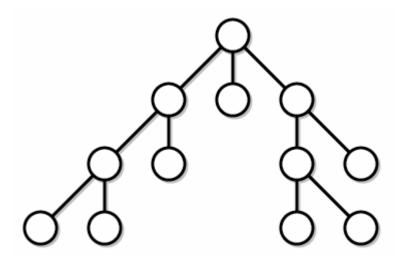
Teoria dos Grafos

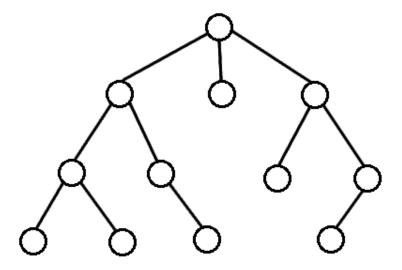
Matriz de adjacência

	V1	V2	V3	V4
V1	-	2	2	1
V2	2	-	-	1
V3	2	-	-	1
V4	1	1	1	-

Matriz de custo

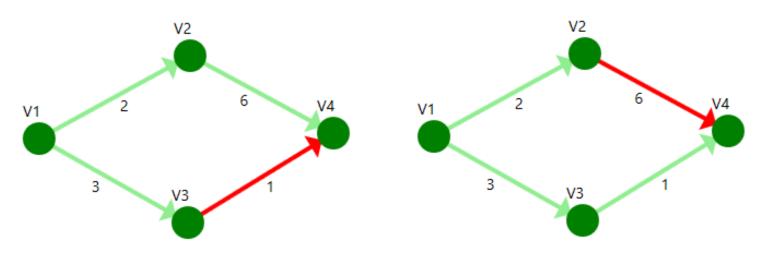
	V1	V2	V3	V4
V1	-	1 1	1 1	1
V2	1 1	-	-	1
V3	1 1	-	-	1
V4	1	1	1	-


Fundamentação Teórica Algoritmos


- Busca (DFS e BFS)
- Caminho mínimo (Dijkstra)
- Árvore geradora mínima (Prim e Kruskal)

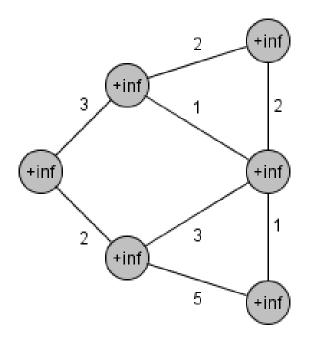
Busca (DFS e BFS)

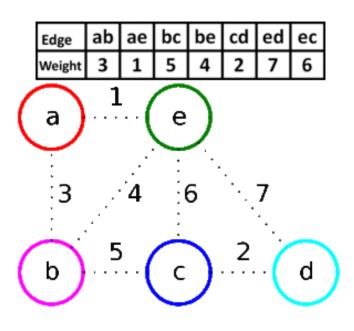
- DFS (Profundidade)
- Pilha de elementos


- BFS (Largura)
- Fila de elementos

Caminho mínimo (Dijkstra)

Distâncias e predecessores permanentes e temporários


Custo V1 para V4: 8


Custo V1 para V4: 4

Árvore geradora mínima (Prim e Kruskal)

Prim (subárvore)

Kruskal (floresta)

- Braun (2009): Ferramenta visual para criação e execução de algoritmos aplicados sobre teoria dos grafos
- Silveira (2007): Desenvolvimento de um aplicativo educacional para o estudo de teoria dos grafos
- Hackbarth (2008): Ferramenta para representação gráfica do funcionamento de algoritmos aplicados em grafos

Correlatos características	Braun (2009)	Silveira (2007)	Hackbarth (2008)	Bernardes (2016)
Possui algoritmos pré-definidos	×	⊘	Ø	⊘
Inclusão de novos algoritmos	Ø	×	×	×
Matriz de adjacência	×	⊘	×	×
Armazenar e carregar grafos	⊗	×	×	⊘
Acompanhamento passo a passo dos algoritmos	×	×	×	(
Disponibiliza material teórico	×	②	×	×

Correlatos características	Braun (2009)	Silveira (2007)	Hackbarth (2008)	Bernardes (2016)
Possui algoritmos pré-definidos	×	⊘	Ø	•
Inclusão de novos algoritmos	⊘	×	×	8
Matriz de adjacência	×	⊘	×	×
Armazenar e carregar grafos	>	×	×	⊘
Acompanhamento passo a passo dos algoritmos	×	8	8	⊗
Disponibiliza material teórico	×	✓	×	×

Correlatos características	Braun (2009)	Silveira (2007)	Hackbarth (2008)	Bernardes (2016)
Possui algoritmos pré-definidos	×	②	Ø	⊘
Inclusão de novos algoritmos	⊘	×	×	×
Matriz de adjacência	×	②	×	×
Armazenar e carregar grafos	>	×	×	⊘
Acompanhamento passo a passo dos algoritmos	×	8	×	⊘
Disponibiliza material teórico	×	⊘	×	×

Correlatos características	Braun (2009)	Silveira (2007)	Hackbarth (2008)	Bernardes (2016)
Possui algoritmos pré-definidos	×	⊘	②	⊘
Inclusão de novos algoritmos	⊘	×	×	×
Matriz de adjacência	×	⊘	×	×
Armazenar e carregar grafos	⊘	×	×	⊘
Acompanhamento passo a passo dos algoritmos	×	8	8	⊘
Disponibiliza material teórico	×	⊘	×	×

Diferenciais do trabalho proposto:

- Apresentação das matrizes de adjacência e custos
- Navegação completa dos algoritmos de Prim e Kruskal

Requisitos funcionais

Requisito	Descrição
RF01	Permitir manter vértices, aresta e grafos
RF02	Permitir exportar e importar um grafo
RF03	Permitir indicar se o grafo é dirigido
RF04	Visualizar propriedades do grafo, matriz de adjacência e matriz de custos
RF05	Permitir indicar vértice de início e destino nos algoritmos
RF06	Permitir controlar a execução de algoritmos
RF07	Permitir alterar custo das arestas

Requisitos não funcionais

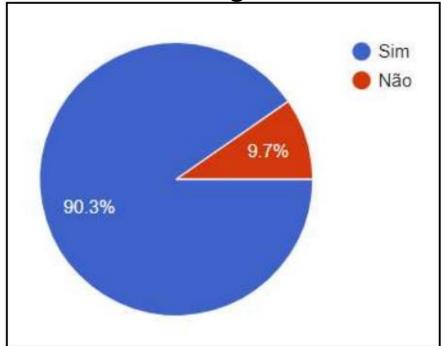
Requisito	Descrição
RNF01	facilitar identificações de vértices através de colorações
RNF02	sugerir nome aos vértices de forma sequencial
RNF03	ser desenvolvida na linguagem de programação C#
RNF04	utilizar o ambiente de desenvolvimento Microsoft Visual Studio 2015
RNF05	utilizar a biblioteca gráfica Windows Presentation Foundation (WPF)

Operacionalidade, Especificação e Implementação

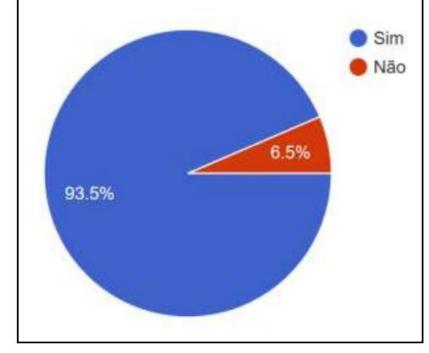
Apresentação da ferramenta

 Experimento realizado com 31 alunos de BCC, no mês de junho de 2018, sem acompanhamento de uma pessoa com conhecimento da ferramenta

Questionários disponibilizados:


- Perfil
- Tarefas
- Avaliação

Questionário de Perfil


Corre	87,1% masculino
Sexo	12,9% feminino
	64,5% tem entre 20 e 25 anos
Ldada	25,8% tem entre 25 e 30 anos
	6,5% tem entre 30 e 35 anos
	3,2% tem mais de 35 anos
Atua na área de TI?	93,5% sim
Atua na area de 11:	6,5% não
Compreende o que é um grafo?	100% sim
Estudou alguma disciplina que envolvesse teoria dos grafo?	100% sim

Questionário de Tarefas

Criar um grafo

Acompanhar o algoritmo (passo a passo)

Questionário de Avaliação

- Interface gráfica e disposição dos componentes
- Execução e acompanhamento dos algoritmos
- Pseudocódigo e coloração
- Impacto da ferramenta no ambiente de estudo

Resultados Interface gráfica e disposição dos componentes

Perguntas / Critérios de avaliação	Concordo totalmente	Concordo parcialmente	Discordo parcialmente	Discordo totalmente
De modo geral, você acredita que a ferramenta foi intuitiva e de fácil utilização?	16,1%	66,7%	9,7%	6,5%
Para você, a interface gráfica e a disposição dos campos facilitaram a utilização da ferramenta?	12,9%	74,2%	6,5%	6,5%
Você consegue se lembrar facilmente de como fazer as operações na ferramenta?	48,4%	32,3%	16,1%	3,2%
Para você a criação/manipulação dos vértices/arestas é de fácil utilização?	29,0%	35,5%	25,8%	9,7%

Resultados Execução e acompanhamento dos algoritmos

Perguntas / Critérios de avaliação	Concordo totalmente	Concordo parcialmente	Discordo parcialmente	Discordo totalmente
Você teve dificuldades para interpretar cada passo avançado nos algoritmos?	6,5%	32,3%	22,6%	38,7%
O modelo de navegação através dos botões foi prático e interativo?	54,8%	19,4%	22,6%	3,2%
A funcionalidade de retroceder um passo do algoritmo se fez útil para compreensão?	67,7%	19,4%	9,7%	3,2%
A funcionalidade de retrocedes todos os passos do algoritmo se fez útil para compreensão?	67,7%	9,7%	19,4%	3,2%
No algoritmo de busca em largura, você compreendeu o vetor de roteamento?	74,2%	19,4%	3,2%	3,2%
No algoritmo de busca em profundidade, o empilhamento e desempilhamento do algoritmo de busca em profundidade ficou visível e compreensível?	77,4%	16,1%	3,2%	3,2%
No algoritmo de Dijkstra, a representação gráfica contribui para o entendimento do algoritmo que é determinar o menor caminho entre uma origem/destino?	64,5%	32,3%	0,0%	3,2%
A compreensão geral dos algoritmos melhorou depois da utilização da ferramenta?	35,5%	54,8%	3,2%	6,5%

Resultados Pseudocódigo e coloração

Perguntas / Critérios de avaliação	Concordo totalmente	Concordo parcialmente	Discordo parcialmente	Discordo totalmente
Na sua opinião, as cores utilizadas na representação gráfica contribuíram para a compreensão dos algoritmos?	77,4%	16,1%	3,2%	3,2%
O pseudocódigo ajudou para a compreensão dos algoritmos?	83,9%	6,5%	3,2%	6,5%
A combinação do pseudocódigo e representação gráfica juntos fizeram sentido para você?	77,4%	16,1%		6,5%

Resultados Impacto da ferramenta no ambiente de estudo

Perguntas / Critérios de avaliação	Concordo totalmente	Concordo parcialmente	Discordo parcialmente	Discordo totalmente
Para o estudo de grafos, seria útil utilizar esta ferramenta?	87,1%	6,5%		6,5%
Você precisaria de ajuda para operar a ferramenta?	9,7%	22,6%	16,1%	51,6%
A ferramenta em algum momento apresentou algum comportamento inesperado?	41,9%	12,9%		45,2%
Seria adequado recomendar esta ferramenta para outras pessoas que estudam grafos?	77,4%	16,1%		6,5%

Conclusões

- Principais características mantidas do trabalho de Bernardes (2016)
- Alteração da linguagem de programação
- Aprovação da ferramenta pela maioria dos alunos (coloração e passo a passo)
- Execução constante da thread de controle

Sugestões

- Descrição nos botões de navegação
- Permitir visualizar outras propriedades do grafo
- Posicionamento inicial dos vértices na importação
- Material de apoio ao estudo
- Parar execução da thread de controle

Agradecimentos

- Aurélio Faustino Hoppe
- Pai (José Bittencourt) e mãe (Arlete Ewald)
- Empresa WK Sistemas

Obrigado!