Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Trabalho de Conclusão de Curso – 2018/1

Protótipo para empacotamento de volumes regulares em contêineres usando algoritmo genético.

Acadêmico: Eberton Marx

eberton@gmail.com

Orientador: Prof. Marcel Hugo

marcel@furb.br

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos Correlatos
- Requisitos
- Desenvolvimento do Protótipo
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

Motivação

Fonte: www.revistamundologistica.com.br

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos correlatos
- Requisitos
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

Introdução

- O custo de transporte representa 60% do custo do processo logístico
- Redução de custo através da otimização de cargas
- Empacotamento de volumes tridimensionais
- Utilização de Algoritmo Genético para o problema do empacotamento

- Motivação
- Introdução

Objetivos

- Fundamentação teórica
- Trabalhos correlatos
- Requisitos
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

Objetivo geral

Desenvolver um protótipo de sistema que auxilie o carregamento de contêineres com volumes regulares tridimensionais.

Objetivos específicos

- Definir qual o contêiner ideal para acomodar a carga;
- Demonstrar de que forma os volumes devem ser dispostos no interior do contêiner;
- Utilizar uma modelagem baseada em algoritmos genéticos;
- Comparar a solução com outros métodos disponíveis na literatura.

- Motivação
- Introdução
- Objetivos

Fundamentação teórica

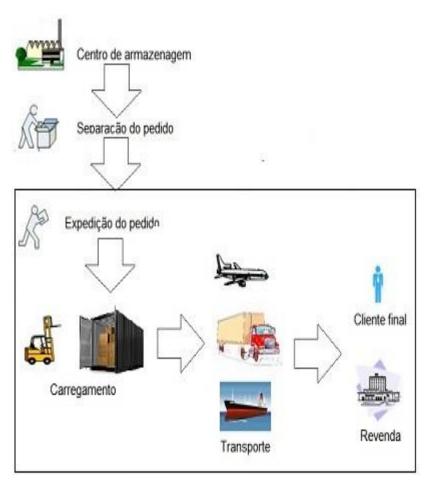
- Trabalhos correlatos
- Requisitos
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

Fundamentação teórica

- Transporte de mercadorias.
- Problemas clássicos.
- Algoritmos genéticos.

Transporte de mercadorias

- Oliveira (2004) destaca a importância de uma logística eficiente para um pais com 8.511.965 km^{2.}
- Distribuição de cargas deve atender todas as regiões
- Otimizar os recursos de transporte
- Simplificação de processos e diminuição de prazos de entrega
- Redução de custos de distribuição
- Produtos com preços mais competitivos


Transporte de mercadorias

- Morabito e Arenales (1997) destacam:
- A importância de otimizar a capacidade volumétrica dos contêineres;
- Respeitar aspectos de fragilidade das embalagens;
- Manuseio da carga;

Transporte de mercadorias

Processo de logística:

- Separação do pedido;
- Minuta de transportes;
- Carregamento;
- Transporte;
- Entrega;

Problemas clássicos

- Problema da mochila(PM);
- Corte de chapas;
- Empacotamento 3D;

Problema da mochila

- Classico de otimização combinatória;
- Organizar n itens com diferentes restrições e lucros dentro de um recipiente limitado (mochila, caixa, contêiner)
- Maximizar o lucro resultante do somatório dos n itens carregados, respeitando a capacidade máxima.
- Classificado em bidimensional e tridimensional.

Problema do corte de chapas

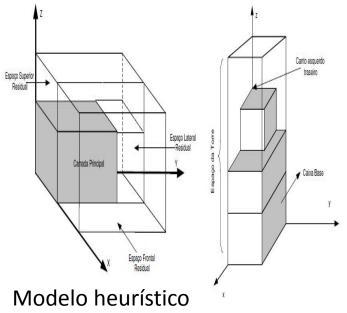
- Pesquisados desde a década de 1940;
- Cortar peças menores baseado em peças maiores;
- Reduzir desperdício;
- Minimizar quantidade de material necessário;
- Industrias de aço, papel, espuma, alumínio;
- Utilizado em problemas 3DBPP;

Problema de Empacotamento 3D

- Conhecido como 3D-BPP;
- Empacotar itens regulares (caixas,pallets) em contêineres;
- Melhor aproveitamento de espaço no contêiner ;
- Restrições aumentam a complexidade do problema;
- Equilibrio dos volumes dentro do contêiner .

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica

Trabalhos correlatos


- Requisitos
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

Trabalhos correlatos

Título: Otimização do 3D-BPP utilizando metaheurística eficiente

características / trabalhos relacionados	Vendramini (2007)
Linguagem	Fortran 4.0
Método utilizado	Chu-Beasley
Interação com usuário	8
Regras de orientação do volume	8
Carga máxima volume	8

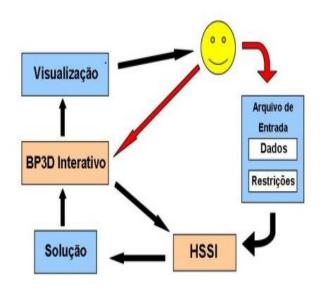
Modelo metaheurístico

Fonte: elaborado pelo autor. Fonte: Vendramini(2007).

Trabalhos correlatos

Título: Implementação Algoritmo genético no problema 3D-BPP

características / trabalhos relacionados	Silva e Soma (2002)
Linguagem	Ansi C
Método utilizado	Heurística volumes
Interação com usuário	8
Regras de orientação do volume	×
Carga máxima volume	8


z D

Fonte: Silva e Soma (2002).

Trabalhos correlatos

Título: BP3D Interativo – Aplicação baseada em HSSI e User Hints

características / trabalhos relacionados	Liberalino et al. (2008)
Linguagem	C++
Equilibrio implementado	8
Metodo utilizado	HSSI + User Hints
Interação com usuário	Ø
Regras de orientação do volume	×
Carga máxima volume	8

Fonte: Liberalino et al (2008).

Comparação entre os correlatos

Correlatos características	Vendramini (2007)	Silva e Souza (2002)	Liberalino et al. (2007)
Linguagem	Fortran 4.0	Ansi C	C++
Método heurístico	Chu-Beasley	Heuristica Volumes	HSSI + User Hints
Interação com usuário	8	8	×
Regras de orientação volume	8	8	②
Carga Máxima do volume	8	8	8

Fonte: elaborado pelo autor

Diferenciais do trabalho proposto:

- Não trabalha com container previamente selecionado
- Utiliza parâmetros nos volumes como rotação, carga máxima, peso

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos correlatos

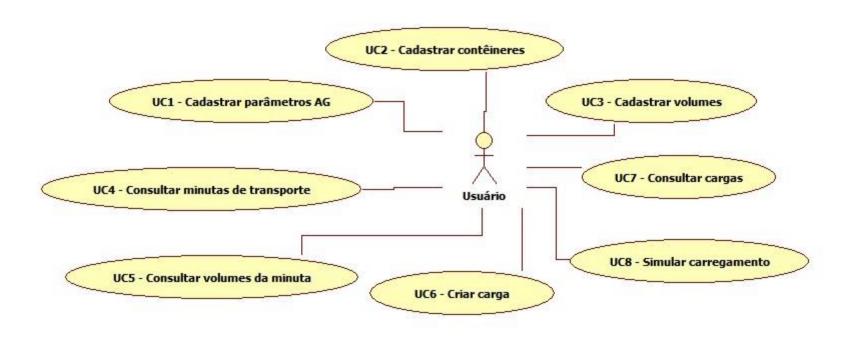
Requisitos

- Desenvolvimento do protótipo
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

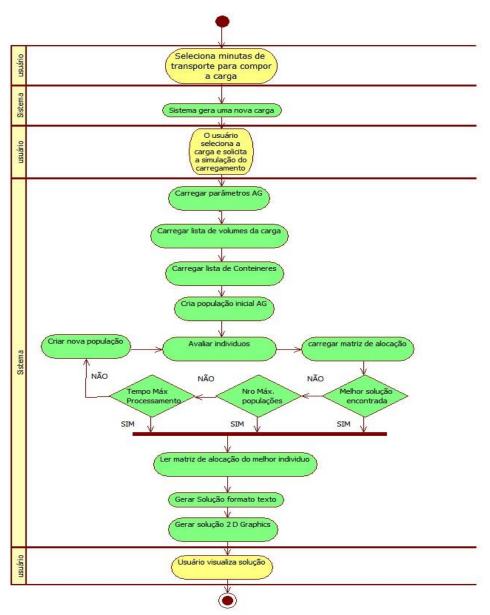
Requisitos funcionais

Requisito	Descrição
RF01	permitir cadastro de contêineres
RF02	permitir cadastro de volumes
RF03	permitir cadastro de parêmetros do AG
RF04	sugerir qual contêiner deve ser utilizado na carga
RF05	mostrar em tela a sequencia de empilhamento de volumes dentro da carga
RF06	motrar volume ocupado, volume disponivel após a carga

Requisitos não funcionais


Requisito	Descrição	
RNF01	utilizar banco de dados MySql	
RN02	ser desenvolvido na linguagem de programação Java	
RNF03	utilizar Algoritmo genético na modelagem do problema	

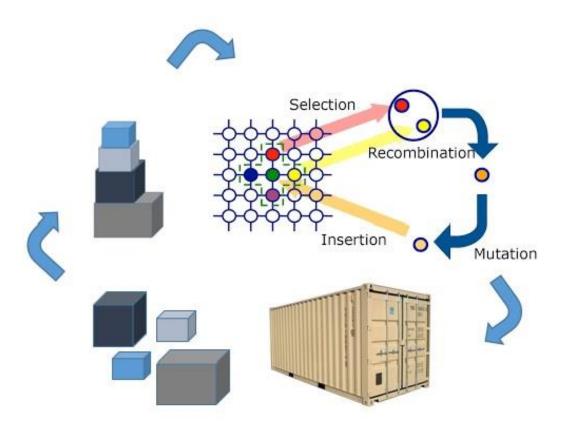
- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos Correlatos
- Requisitos


Especificação

- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

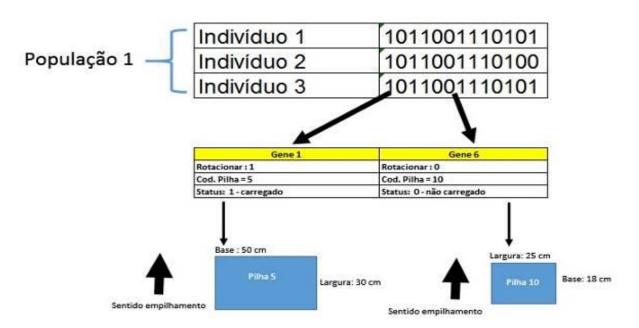
Especificação diagrama casos de uso

Especificação diagrama atividades

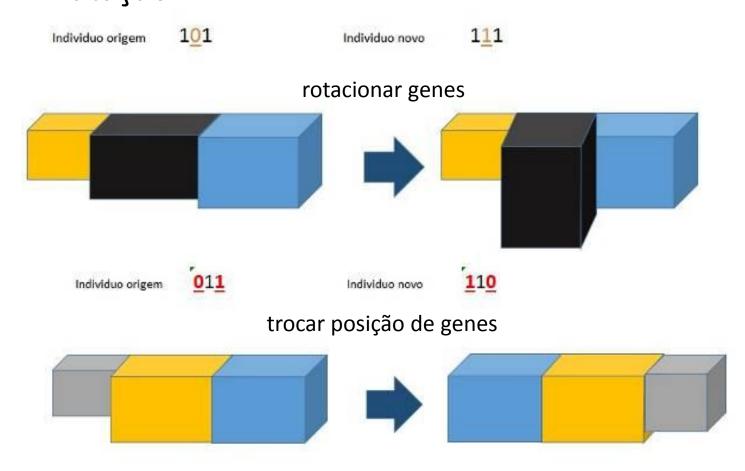


- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos Correlatos
- Requisitos
- Especificação

Implementação

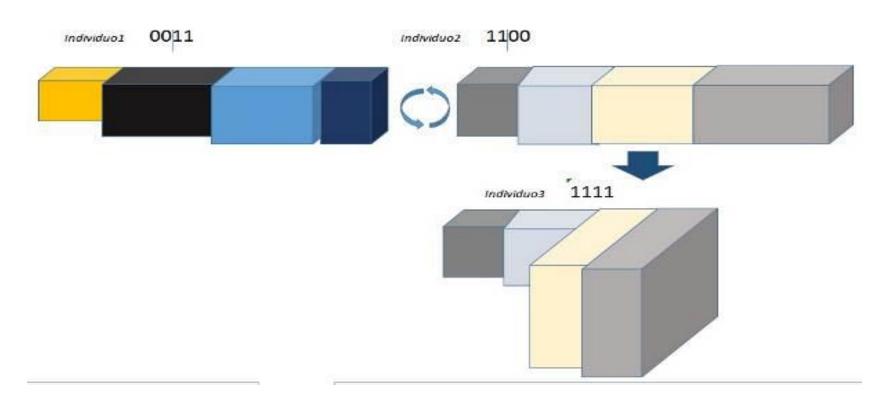

- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

Implementação



Implementação - Modelagem

- Modelagem em pilhas;
- Criação de pilhas por contêiner;
- Genes, indivíduos e populações;
- Definição de termos do AG:
 - Genes ou cromossomos serão representados pela pilha de volumes.
 - Indivíduos : Lista de genes (soluções).
 - População: Conjunto de indivíduos processadas pelo AG a cada nova geração.



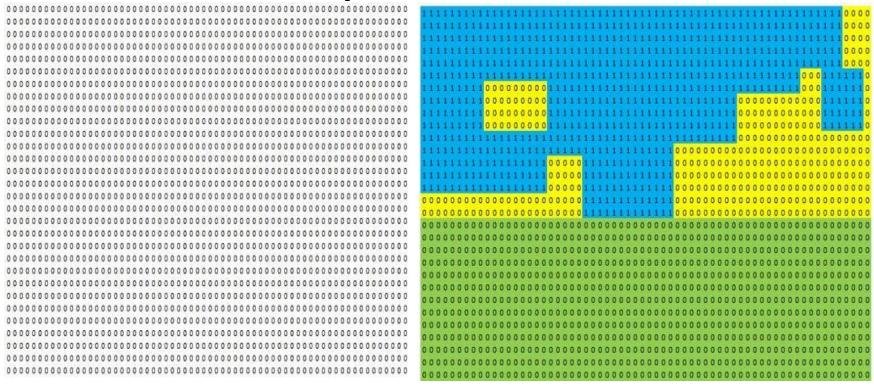
Implementação - Operadores genéticos Mutação

Implementação - Operadores genéticos

Crossover

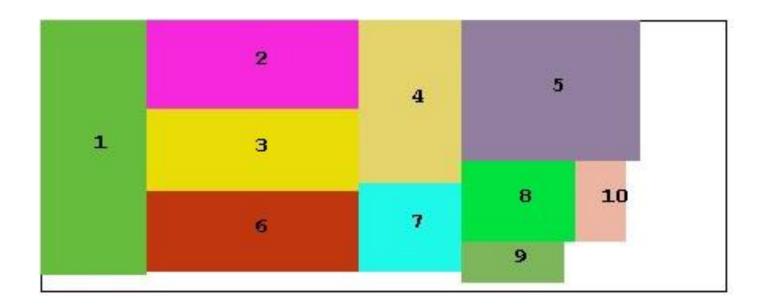
Implementação – Parâmetros do AG

Critérios de parada:


```
Tempo limite de execução;
Número máximo de populações;
Percentual residual;
```

Evolução das populações:

```
Percentual de seleção natural;
Percentual de Aptos;
Número máximo de indivíduos;
```


Implementação – Alocação do contêinere

Matriz de alocação

Implementação – Saídas

Representação 2D das pilhas da carga

Implementação – Saídas

Saída TXT: relatório pilhas

```
PILHA: 1
Rotacionar: SIM
Posicao na carga: 0 - 0
Volumes:

68 - EMBALAGEM VOL0068 - Peso do Volume: 300.00 - Peso Max Suportado: 800.00
70 - EMBALAGEM VOL0070 - Peso do Volume: 100.00 - Peso Max Suportado: 200.00
71 - EMBALAGEM VOL0071 - Peso do Volume: 70.00 - Peso Max Suportado: 90.00
69 - EMBALAGEM VOL0069 - Peso do Volume: 10.00 - Peso Max Suportado: 5.00
```

Implementação – Saídas

- Saída TXT: Dados processamento
 - Total de populações do AG;
 - Total de indivíduos do AG;
 - Tempo de processamento do AG;
 - Melhor indivíduo;
 - Número da população do melhor indivíduo ou solução;
 - Percentual residual;
 - Total de pilhas;
 - Quantidade de volumes;
 - Descrição do contêiner;
 - Área ocupada no contêiner;
 - Área total do contêiner ;
 - Base do contêiner;
 - Largura do contêiner;
 - Área total disponível ;
 - Percentual disponível;
 - Percentual ocupado.

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos Correlatos
- Requisitos
- Especificação
- Implementação

Análise dos resultados

- Comparativo com trabalhos correlatos
- Conclusões
- Extensões

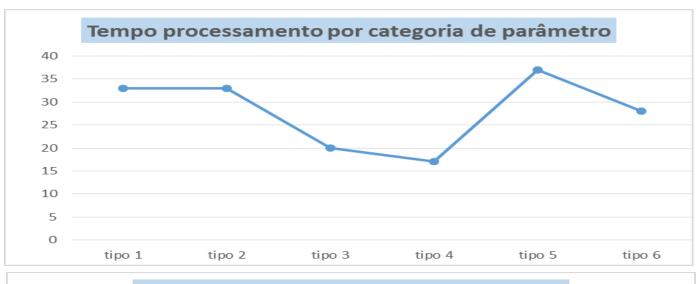
Análises dos resultados – Dados entrada

Tipos de parâmetros do AG:

Categoria	Nro máx. Individuos	Nro máx. populações	% seleção natural	% de aptos
Tipo 1	<= 50	>50	<= 10	<= 5%
Tipo 2	<= 50	>50	> 10	> 5%
Tipo 3	<= 50	>50	<= 10	<= 5%
Tipo 4	>50	<=50	> 10	> 5%
Tipo 5	>50	<=50	<= 10	<= 5%
Tipo 6	>50	<=50	>10	> 5%

Análises dos resultados – Dados entrada

Contêineres:


Contêiner	Base	Largura	Altura	Área Total (Base*Largura)	Volume Total (Base*Largura*Altura)
Contêiner 1	2.99m	2.59m	2.44m	7,74m²	18,89m³
Contêiner 2	6.00m	2.59m	2.44m	15,54m²	37,91m ³
Contêiner 3	4.00m	2.59m	2.44m	10,36m ²	25,27m ³

Analises dos resultados – Dados entrada

Categoria A – 980 volumes

Volume	Quantidade	Base	Largura	Altura	Carga máxima suportada	Peso
Caixa 1	30.00	0.05m	0.10m	0.10m	101.00 kg	10.10 kg
Caixa 2	60.00	0.20m	0.30m	0.10m	100.00 kg	10.00 kg
Caixa 3	50.00	0.20m	0.40m	0.11m	330.00 kg	33.00 kg
Caixa 4	50.00	0.12m	0.18m	0.12m	120.00 kg	12.00 kg
Caixa 5	50.00	0.13m	0.25m	0.13m	390.00 kg	39.00 kg
Caixa 6	150.00	0.26m	0.33m	0.14m	140.00 kg	14.00 kg
Caixa 7	50.00	0.19m	0.45m	0.80m	150.00 kg	15.00 kg
Caixa 8	50.00	0.16m	0.20m	0.16m	160.00 kg	16.00 kg
Caixa 9	50.00	0.17m	0.10m	0.17m	170.00 kg	17.00 kg
Caixa 10	50.00	0.18m	0.08m	0.18m	180.00 kg	18.00 kg
Caixa 11	50.00	0.15m	0.40m	0.80m	570.00 kg	57.00 kg
Caixa 12	40.00	0.10m	0.20m	0.20m	200.00 kg	20.00 kg
Caixa 13	50.00	0.25m	0.70m	0.22m	250.00 kg	25.00 kg
Caixa 14	150.00	0.10m	0.20m	0.45m	100.00 kg	10.00 kg
Caixa 15	50.00	0.45m	0.12m	0.10m	470.00 kg	47.00 kg
Caixa 16	50.00	0.20m	0.10m	0.44m	200.00 kg	20.00 kg

Analises dos resultados – Categoria A


Analises dos resultados – Dados entrada

Categoria B – 1760 volumes

Volume	Quantidade	Base	Largura	Altura	Carga máxima suportada	Peso
Caixa 1	150.00	0.16m	0.31m	0.31m	310.00 kg	31.00 kg
Caixa 2	250.00	0.16m	0.32m	0.32m	320.00 kg	32.00 kg
Caixa 3	150.00	0.17m	0.33m	0.33m	330.00 kg	33.00 kg
Caixa 4	225.00	0.17m	0.34m	0.34m	340.00 kg	34.00 kg
Caixa 5	25.00	0.20m	0.39m	0.39m	390.00 kg	39.00 kg
Caixa 6	250.00	0.20m	0.40m	0.40m	400.00 kg	40.00 kg
Caixa 7	180.00	0.21m	0.41m	0.41m	410.00 kg	41.00 kg
Caixa 8	105.00	0.21m	0.42m	0.42m	420.00 kg	42.00 kg
Caixa 9	25.00	0.22m	0.43m	0.43m	430.00 kg	43.00 kg
Caixa 10	100.00	0.22m	0.44m	0.44m	440.00 kg	44.00 kg
Caixa 11	125.00	0.45m	0.40m	0.45m	1350.00 kg	135.00 kg
Caixa 12	150.00	0.10m	0.20m	0.45m	100.00 kg	10.00 kg
Caixa 13	25.00	0.45m	0.12m	0.10m	470.00 kg	47.00 kg

Analises dos resultados – Categoria B

Analises dos resultados – Conclusões

Categoria	Parâmetro AG	Nro máx. Indivíduos	Nro máx. populações	% seleção natural	% de aptos
Categoria B	Tipo 3	<= 50	>50	<= 10	<= 5%
Categoria A	Tipo 4	>50	<=50	> 10	> 5%

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos Correlatos
- Requisitos
- Especificação
- Implementação
- Análise dos resultados

Comparativo com trabalhos correlatos

- Conclusões
- Extensões

Comparativo com correlatos

	Vendramini	Silva e Soma	Liberalino et al.	Protótipo
Correlatos	(2007)	(2002)	(2008)	(2018)
Características				
Linguagem	FORTRAN 4.0	С	C++	Java
Método	Chu-Beasley	HV	HSSI + User Hints	AG
Interação suário	Não	Não	Sim	Não
Rotação volume	Não	Não	Não	Sim
Carga máxima	Não	Não	Não	Sim
Visualização 2D	Não	Não	Não	Sim
Contêiner pré definido	Sim	Sim	Sim	Não

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos Correlatos
- Requisitos
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos

Conclusões

Extensões

Conclusões

- O método cumpre o papel para o 3DBPP;
- O espaço alocado de forma otimizada;
- Modelagem mista de demonstrou eficiente;
- Tempo de processamento aceitável;
- Distribuição dos volumes em contêineres aleatórios atendida.

- Motivação
- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos Correlatos
- Requisitos
- Especificação
- Implementação
- Análise dos resultados
- Comparativo com trabalhos correlatos
- Conclusões

Extensões

Extensões

A partir do trabalho desenvolvido pode-se sugerir as seguintes extensões:

- implementar um segundo AG para a formação das pilhas;
- criar uma visualização tridimensional das pilhas e do contêiner.

Demonstração do protótipo

Agradecimentos.

Comentários.

Obrigado!