SIMULAÇÃO DE DINÂMICA DO RELEVO ATRAVÉS DA TRANSFORMAÇÃO DE MAPAS DE ALTURA

Aluno(a): Guilherme Diegoli Neto

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação
- Correlatos
- Requisitos/especificação
- Implementação
- Resultados/conclusões

Introdução

- Paisagem da Terra em constante mudança (forças endógenas e exógenas)
- Possíveis prejuízos sociais e econômicos
- Interesse no estudo destes processos
- Representação computacional dos processos de dinâmica de relevo

Objetivos

- Verificar a aplicação de algoritmos computacionais para a representação de processos de dinâmica do relevo
- Visualização/edição de uma paisagem virtual
- Extração/visualização de informações da paisagem


Fundamentação Teórica

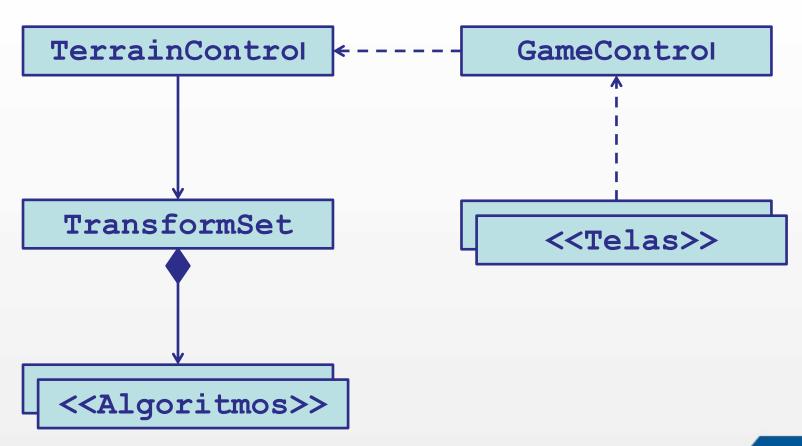
- Estrutura do solo: solo residual/sedimentar e rocha matriz
- · Composição do solo: acúmulo de água
- Superfícies do solo
- Representação computacional (mapa de altura)

Trabalhos Correlatos

- Craftscape (WebGL)
- Simulação de erosão hidráulica e acúmulo de água
- Desgaste da rocha e transporte do solo

Trabalhos Correlatos

- From Dust (jogo)
- Simulação de erosão hidráulica, deslizamentos e vulcanismo
- Aplicação lúdica dos processos



Requisitos

- Criação/edição/visualização de uma paisagem virtual
- Simulação em tempo real
- Exibição de dados/estatísticas
- Desenvolvido em Unity para desktop

Especificação

Implementação

- Transformações sobre o mapa de altura
- Algoritmos de erosão térmica e hidráulica
- Parametrização da rocha matriz, superfície do solo e umidade do solo

Implementação – Erosão Térmica

```
para cada ponto (x,y)
se houver diferença de altura maior que T
transferir solo até diferença ser igual à T;
```

Fórmula da diferença máxima T

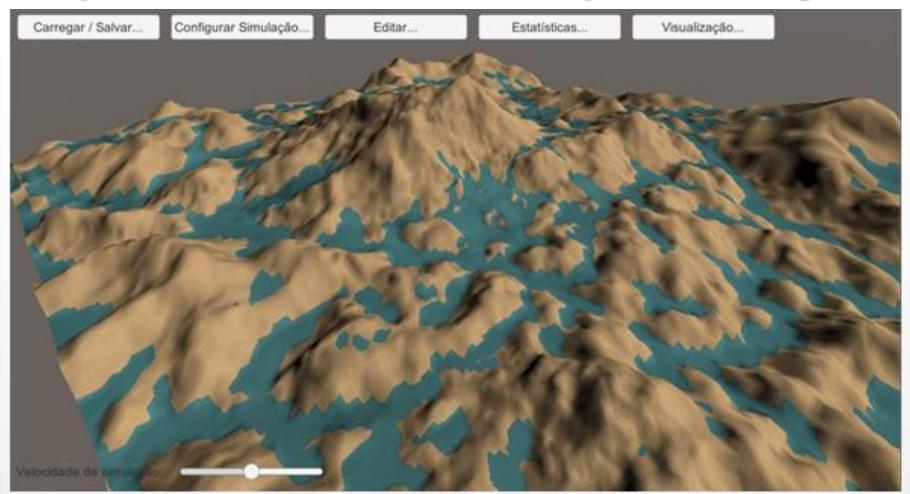
```
T = (constante * superfície) - (umidade * constante / 2);
```

Fórmula de distribuição de solo

```
limitador = 1;
se estimativa > qtdeSolo
        limitador = qtdeSolo / estimativa;
transferir = constante * (maiorDiferença - T) *
(diferença / somaDiferenças) * limitador;
```

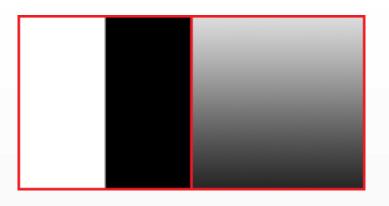

Implementação – Erosão Hidráulica

```
para cada ponto da superfície (x,y)
se houver pontos mais baixos
transferir água até as alturas equalizarem;
```


Fórmula de distribuição de água

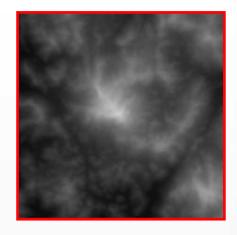
```
transferir = Min(qtdeÁgua, superfície - médiaSuperfícies)
* (diferença / somaDiferenças);
```

Precipitação/absorção da água


Operacionalidade da Implementação

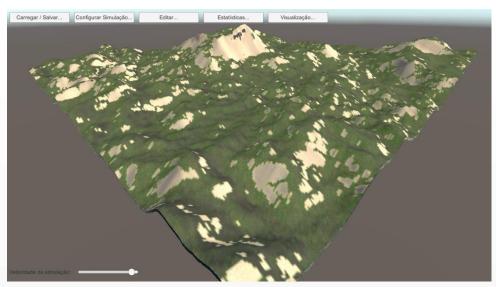
Resultados - Estatísticas

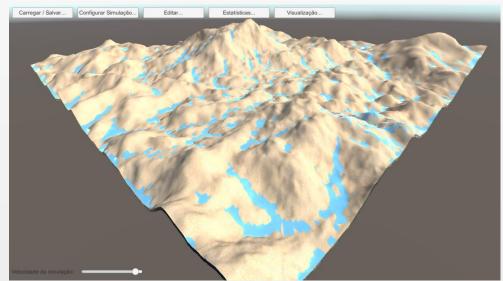
- Mapas Split e Slope
- Visão geral, com margem de erro



Estatística	Split	Slope	
Massa total do solo	166,3978	166,3978	
Maior profundidade	0,01	0,01000001	
Menor profundidade	0,00999999	0,00999999	
Profundidade média	0,009999269	0,009999269	
Maior inclinação	0,5843138	0,01176473	
Menor inclinação	0,4156862	0,003921568	
Inclinação média	0,5	0,005269003	
Altura média	0,500654	0,5109465	

Resultados - Simulações


- Mapa Morro do Cachorro
- Resultados simples mas compreensíveis



Estatística	Inicial	Erosão térmica	Erosão hidráulica
Massa total do solo	5267,897	5267,249	5113.614
Maior profundidade	0,02000001	0,05004317	0,020511866
Menor profundidade	0,01999998	5,364418e-07	0,000664562
Profundidade média	0,02001716	0,0200147	0,01943091
Maior inclinação	0,03529412	0,03535414	0,03532404
Menor inclinação	0,003921568	7,450581e-09	7,450581e-09
Inclinação média	0,005250997	0,00490757	0,00357193

Resultados - Simulações

Resultados e Discussões

	Craftscape	From Dust	Nosso projeto
Importação de mapas de altura	Não	Não	Sim
Deslizamentos de terra	Não	Sim	Sim
Dinâmica de fluidos	Sim	Sim	Sim
Erosão hidráulica	Sim	Sim	Sim
Precipitação/evaporação	Sim	Não	Sim
Camada de rocha	Sim	Sim	Sim
Tipos de superfície	Só visual	Só visual	Sim
Umidade do solo	Não	Não	Sim
Desgaste da rocha	Sim	Não	Não
Processos ocorrem naturalmente	Sim	Limitado	Sim

Conclusões e Sugestões

- Atualização constante do relevo no Unity tem alto impacto no desempenho
- Formato de algoritmo viável, de fácil desenvolvimento, mas com limitações.
- Possível extensão dos algoritmos ou integração com outras aplicações

Apresentação Prática

