

Sistema Óptico para Identificação de Veículos em Estradas

Daniel dos Santos - Acadêmico

Dalton Solano dos Reis - Orientador

Roteiro

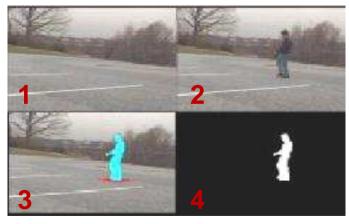
- Introdução
 - Objetivos do trabalho
- Fundamentação teórica
 - Remoção de fundo, Algoritmos adaptativos, Algoritmo NHD
- Desenvolvimento do sistema
 - Requisitos principais, especificação, resultados e discussão
- Conclusão
 - Extensões

Introdução

- Segurança
 - Monitoramento CFTV
 - Problema
 - Efetiva atenção após 30 min.
- Visão computacional
 - Monitoramento inteligente
 - Processamento de imagens
 - Inteligência artificial
- Sistema de controle de tráfego

Objetivos do trabalho

- Identificar nas imagens de câmeras fixas:
 - Veículos do tipo automóvel para contagem
- Extração de objetos em movimento:
 - Segmentação
 - Tratamento: luminosidade, foco e ruído
- Utilizar rede neural artificial:
 - Treinamento
 - Identificação e contagem
- Comparar algoritmos de segmentação



Fundamentação teórica

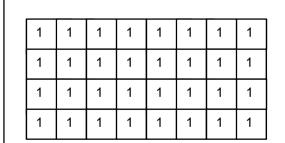
Remoção de fundo

- Etapas
 - Modelagem de fundo
 - Seleção de limiar
 - Operação de subtração: atual X referência
- Classificação:
 - Fundo ou movimento

Exemplo de resultado de subtração de fundo

Remoção de fundo

- Problemas:
 - Variação de iluminação
 - Sombras
 - Dependência ao cenário
- Ambientes comportados



Problema de luminosidade com algoritmo de subtração de fundo

Algoritmos adaptativos

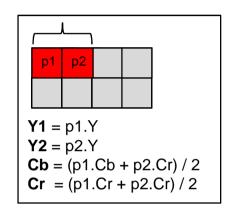
- Algoritmo adaptativo
 - Robusto a variação de luminosidade
 - Absorção de movimentos repetitivos
 - Background dinâmico objetos estacionários
 - Independência ao cenário

Primeiro quadro (frame)

10	10	10	1	1	10	10	1
10	10	1	1	1	1	10	1
10	10	1	1	1	1	10	1
10	10	10	1	1	10	10	1

Décimo quadro (frame)

Funcionalidade de um algoritmo adaptativo



Algoritmo NHD

- Quadros (Imagens)
 - Formato Y'CbCr
 - Compressão 4:2:2: Y₁Y₂CbCr
- Cluster
- Grupo de clusters
 - Soma total igual a 1
 - Ordenados por peso
 - Etapa de classificação

Grupo de clusters

Processo de compressão 4:2:2

Trabalhos correlatos

- Protótipo de sistema óptico de captura do movimento humano, sem a utilização de marcações especiais (FERNANDES, 2002)
- Inspeção industrial através de visão computacional (STIVANELLO, 2004)

Desenvolvimento do sistema

Requisitos principais

- RF Disponibilizar uma interface para configurar um cenário a partir de uma imagem de vídeo
- RF Disponibilizar uma ferramenta de desenho de fronteiras, onde serão feitas as contagens de veículos
- RF Disponibilizar uma interface para permitir o treinamento da rede neural com exemplos de veículos do tipo automóvel
- RF Disponibilizar contador de automóveis
- RNF Utilizar linguagem C++ e ambiente Borland Builder 6

Diagrama de casos de uso

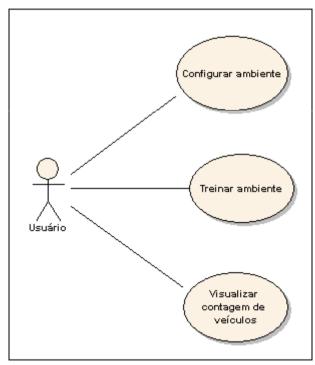


Diagrama de casos de uso

Estrutura

- Ambient: Cenário
- Processor: Player
- Codecs: Processamento de imagens
 - Segmentação Subtração de fundo
 - Segmentação NHD
 - Pós-processamento morfologia matemática
 - Treinamente da rede neural
 - Classificação através da rede neural
- Apoio: Estruturas de algoritmos

Diagrama de seqüência

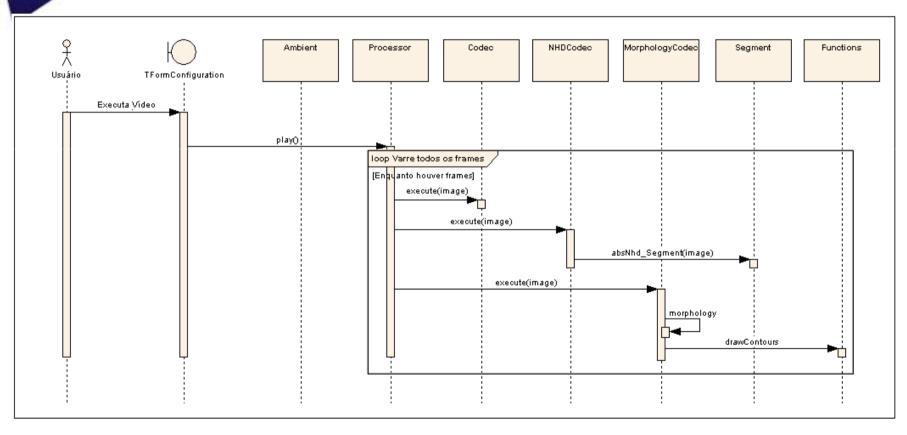
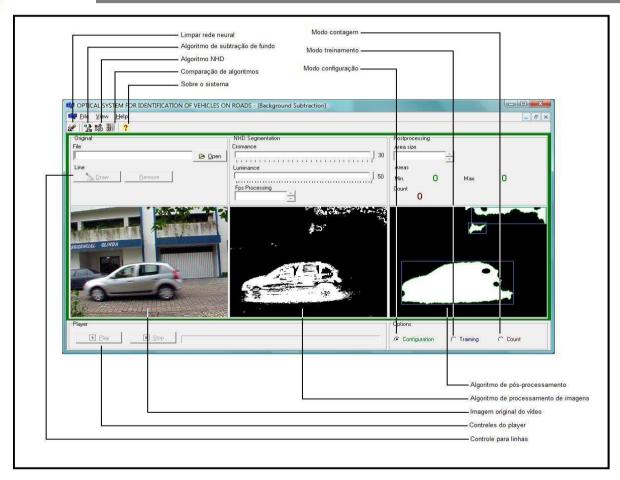


Diagrama de seqüência

OpenCV

- Open Source Computer Vision Library
 - Livre e multiplataforma
 - Ferramentas otimizadas Visão Computacional
- Módulos utilizados
 - Processamento de Imagens e Video I/O
 - Estrutura de dados
 - Álgebra Linear
 - Algoritmos de Visão Computacional



Rede neural

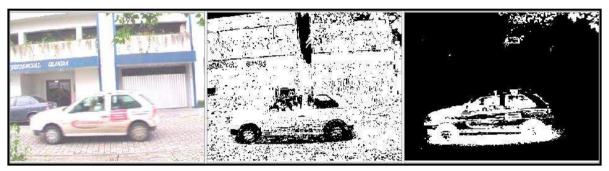
- Adaptação do código de STIVANELLO (2004)
 - Perceptron Multicamadas
- Estrutura
 - 15 descritores de Fourier
 - 15 neurônios na camada oculta
 - 15 neurônios na camada de entrada
 - 1 neurônio na camada de saída

Utilizando o sistema

Tela de configuração de ambiente, através do algoritmo NHD

Resultados e discussão

Segmentação


- Vídeo
 - 320 x 240
 - 30 fps
- Máquina
 - Windows Vista
 - Athlon 64 X2 Dual Core 3800+
 - 2GB de memória Ram

TESTE DE DESEMPENHO								
Algoritmo FPS Mem. Kb. CPU								
Sub. Fundo	6	10.032	46%					
NHD	4	14.780	53%					

Segmentação

Adaptação de alteração de luminosidade

Adaptação de fundo objeto estacionário

Rede neural

- Amostras
 - Recomendado utilizar 480 amostras
 - Utilizado entre 10 e 15 amostras
- Resultado
 - A rede neural atende a necessidade
 - Necessidade de um número maior de amostras

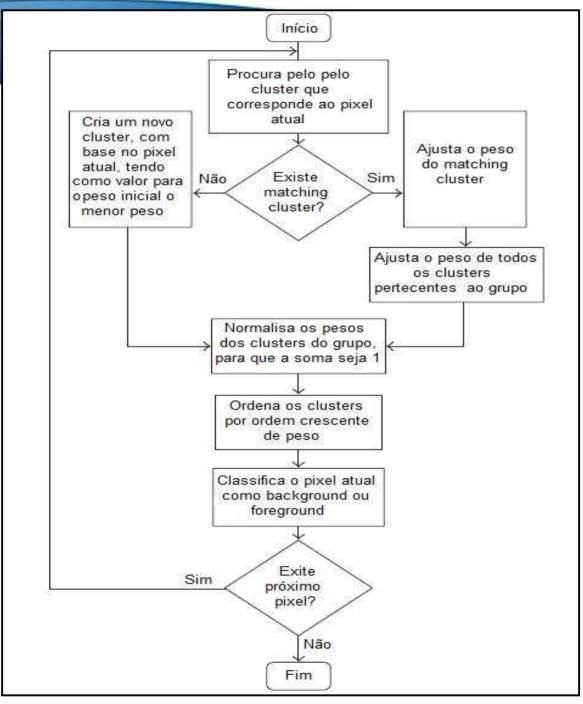
Conclusão

- Algoritmo NHD melhor que Remoção de Fundo
- Pós-processamento eficaz
- Descritores de Fourier desconsidera rotação e translação
- Adaptação da Rede Neural Artifical Perceptron Multicamadas
- Aplicação lenta

Extensões

- Melhorar o sistema
 - Performance
 - Outros algoritmos de segmentação
 - Perseguição de objetos trajetória colisão
- Identificação
 - Melhorar rede neural
 - Outras técnicas de reconhecimento
 - Diferenciar automóveis XIAOXU (2004)
- Outras aplicações

Apresentação prática


Obrigado!

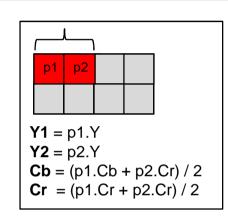
"Por mais que o preguiçoso deseje alguma coisa, ele não conseguirá, mas a pessoa esforçada consegue o seu desejo.

Fluxograma Algoritmo NHD

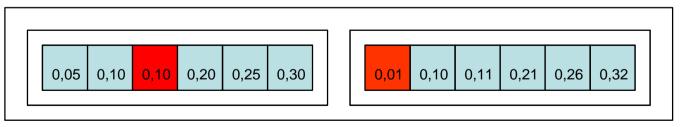
Fundamentação teórica → Conceitos básicos → Algoritmo NHD

Algoritmo NHD

Grupo de clusters


- Procura pelo matching cluster
 - Percorrer grupo de clusters
 - Peso inicial 0,01
- Distância de Manhattan

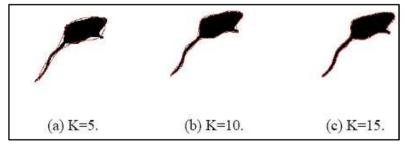
```
|pixel.Cb - cluster.Cb| + |pixel.Cr - cluster.Cr|
|pixel.Y_1 - cluster.Y_1| + |pixel.Y_2 - cluster.Y_2|
```



Algoritmo NHD

- Quadros (Imagens)
 - Formato Y'CbCr
 - Compressão 4:2:2: Y₁Y₂CbCr
- Conceitos importantes

Processo de compressão 4:2:2

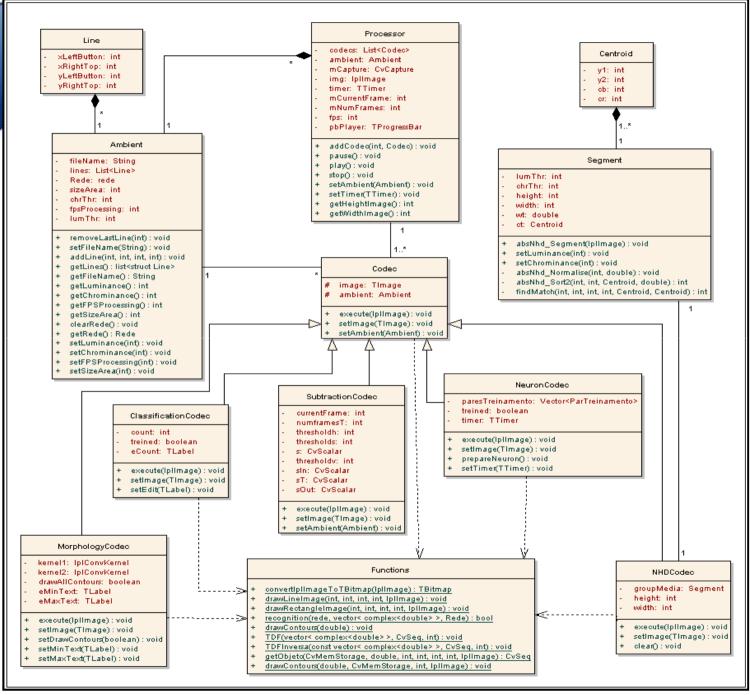
- Etapa de classificação
 - Procura pelo matching cluster
 - Peso inicial 0,01



Grupo de clusters

Descritores de fourier

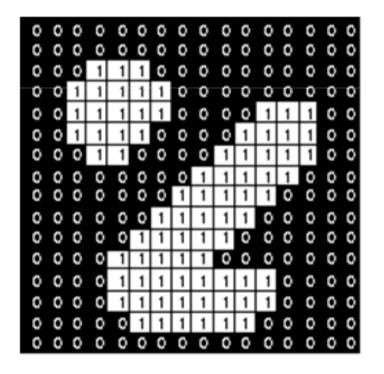
- Representação de imagens
 - Pontos de fronteira
 - Identificação
 - Espaçamento de K coeficientes
- Vantagens
 - Quantidade pequena de descritores
 - Invariantes a translação e rotação



Resultados de diferentes números de coeficientes

Diagrama de Classes

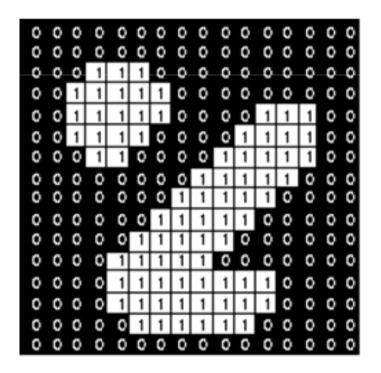
Desenvolvimento da ferramenta → Especificação → Diagrama de classes

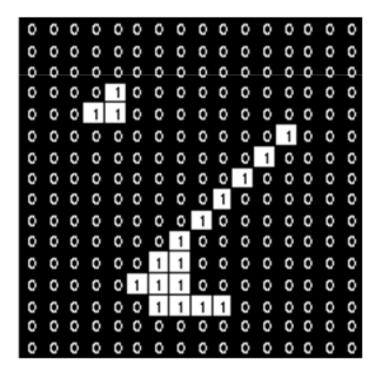


Dilatação

Tornar objetos mais largos

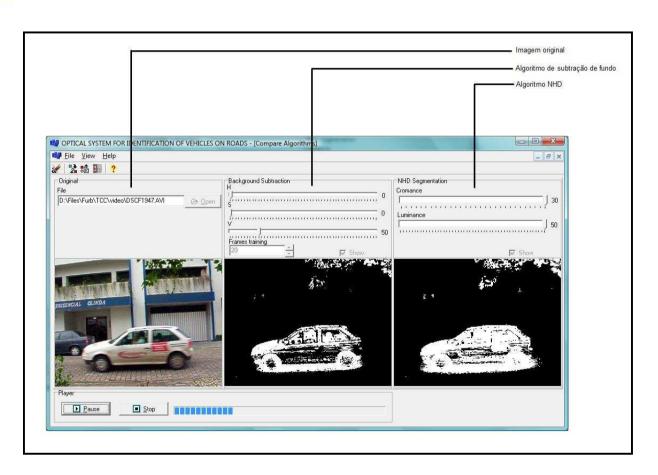
1	1	1
1	1	1
1	1	1


1 1 0	0 0			0	•	_					٥	0	0	٥	_
1 1 0	_	0	•		0	0	0	0	1	1	1	1	1	0	0
1 0	1 1		0	o	0	0	0	1	1	1	1	1	1	1	0
		1	1	1	1	٥	Q	1	1	1	1	1	1	1	0
1 0	1 1			1	1	1	0	1	1	1	1	1	1	1	٥
- 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	٥
1 0	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	٥
1 0	1 1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
0 0	1 0	1	1	1	1	1	1	1	1	1	٥	٥	0	0	٥
0	0 0	0	1	1	1	1	1	1	1	1	1	o	0	0	٥
0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	٥
0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	٥
0	0	0	1	1	1	1	1	1	1	1	1	1	0	O	٥
0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0
0 0	0	0		1	1	1	1	1	1	1	1	1	0	0	٥
0	0	0	0	1	1	1	1	1	1	1	1	٥	0	0	٥
	1 0 0 0 0 0 0	0 0 0 0	1 1 1 1	1 1 1 1	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	10000000	0000000	00000000

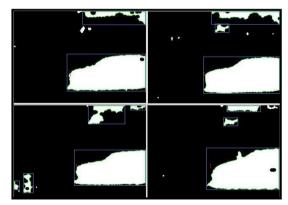


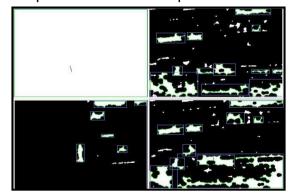
Erosão

Remove os pixels da camada externa de um objeto



1	1	1
1	1	1
1	1	1


Utilizando o sistema


Tela de comparação de algoritmos de segmentação

Rede neural

Exemplos de automóveis para treinamento

Exemplos de segmentos inválidos