PROTÓTIPO DE LABORATÓRIO DE EXPERIMENTAÇÃO REMOTA MULTIPLATAFORMA CLIENTE

ACADÊMICO: NADER ZANOTTO ORIENTADOR: MIGUEL ALEXANDRE WISINTAINER

ROTEIRO

- Introdução
- Objetivos
- Fundamentação teórica
- Desenvolvimento do trabalho
- Conclusões
- Extensões

INTRODUÇÃO

- Ensino a distância
 - Quebra das barreiras geográficas
 - Acesso a informação e tecnologia
- Laboratório de experimentação remota
 - Permite obter informações reais de recursos sem a necessidade de possuí-los

OBJETIVOS

- possibilitar o desenvolvimento de software na linguagem Assembly em qualquer plataforma
- executar experimentos reais com o microcontrolador 89C51 sem a necessidade de dispor do hardware

LABORATÓRIO DE EXPERIMENTAÇÃO REMOTA

- conjunto de instrumentos ligados a computadores os quais estão conectados a Internet (WISINTAINER, 1999, p. 32)
- vantagens
 - Experimentos reais
 - Custos hardware
 - Redução de riscos

MICROCONTROLADOR 80C51

- Características
 - CPU 8 bits, 64kB end. dados, 64kB end. programa, 4kB mem. prog. e 128kbits de mem. dados, 32 linhas end. E/S, 5 int., 1 oscilador
- Estrutura para execução de um programa
 - barramentos dados, endereço, controle
 - memória interna 0000H->1FFFH.
 - memória externa
 - oscilador
- Execução de um programa
 - reset
 - memória interna ou externa (EA baixo externa, alto interna)
 - Registrador PC

INTERAÇÃO COM O BARRAMENTO DO COMPUTADOR

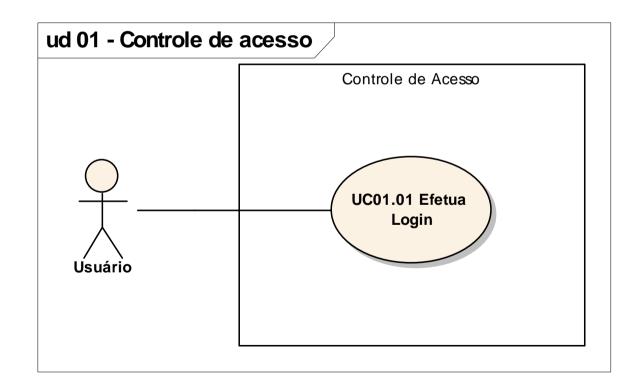
- Conectar periféricos
- Tipos conhecidos
 - ISA, PCI, AGP...
- Barramento ISA
 - 8 bits, 16 bits
- Principais pinos
 - A2 A9: dados
 - A12 A31: endereços
 - B1: GROUND
 - B3: +5V
 - B9: +12V

APLICAÇÃO CLIENTE / SERVIDOR

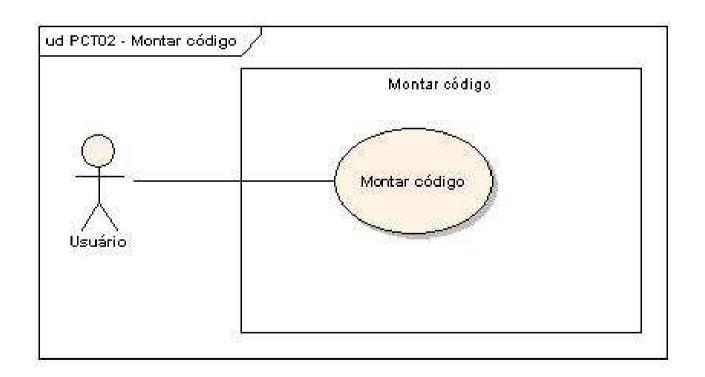
- Abordagem da computação que separa processos em plataformas independentes e que permitem o compartilhamento de recursos obtendo o máximo de benefícios (BOCHENSKI, 1995, p. 8).
- Características
 - operacionalidade em rede
 - ações iniciam no cliente
 - servidor e cliente podem operar em diferentes plataformas

APLICAÇÃO EM AMBIENTE WEB

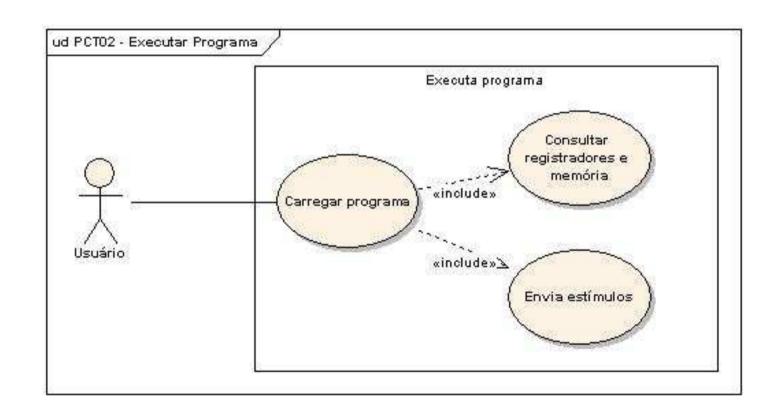
- Evolução de sites
- Permite ao usuário executar uma regra do negócio através de um navegador (CONALLEN, 2003, p.11).
- Gerenciamento do estado do cliente
 - cookies: fragmento de dado
- Tecnologias de ativação
 - scripts
 - JSP, ASP, PHP

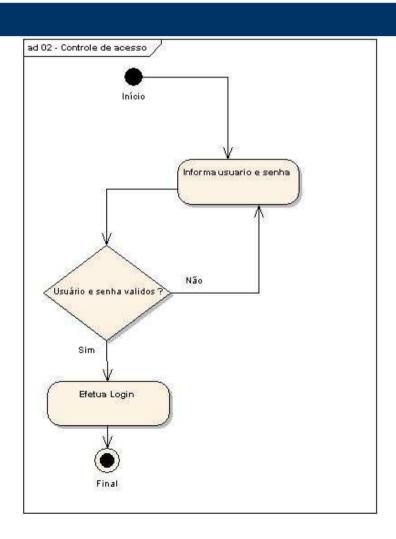

PRINCIPAIS REQUISITOS DA IMPLEMENTAÇÃO

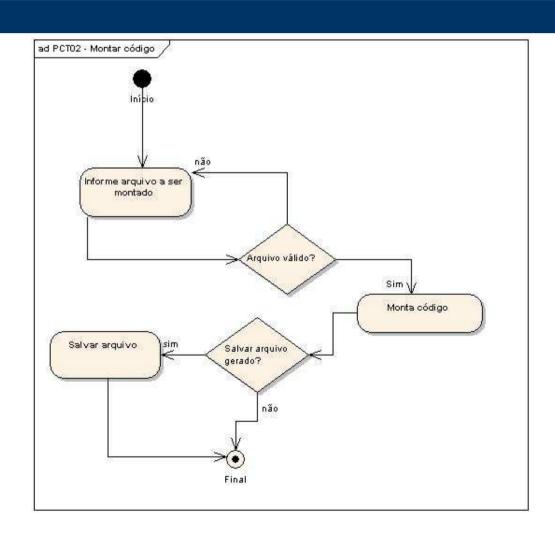
- Fornecer uma área para digitação do código a ser traduzido
- Permitir acompanhar o experimento verificando o conteúdo de registradores e posições de memória
- Chamar um montador para verificar o código recebido

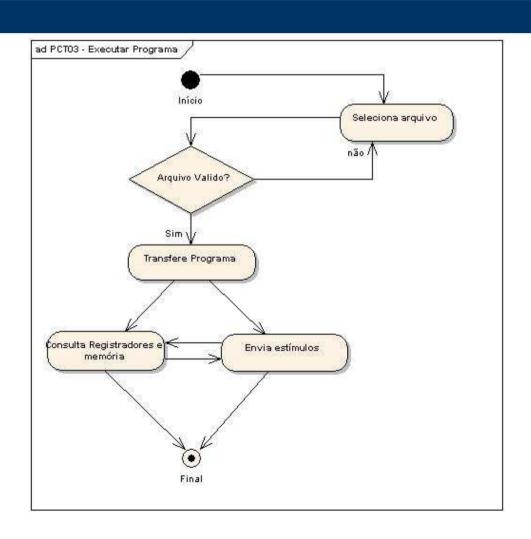

ESPECIFICAÇÃO

- UML para especificação
- Enterprise Architect
- Diagramas de caso de uso, de atividades e classe


CASO DE USO – Controle de Acesso


CASO DE USO – Montar Código


CASO DE USO – Executar Programa


DIAGRAMA DE ATIVIDADES – Controle de Acesso

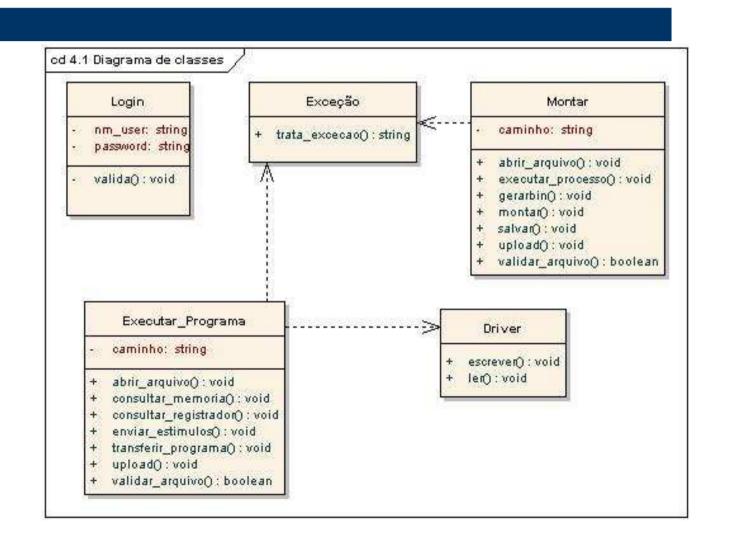

DIAGRAMA DE ATIVIDADES – Montar Código

DIAGRAMA DE ATIVIDADES – Executar Programa

DIAGRAMA DE CLASSES

FERRAMENTAS UTILIZADAS

- Microsoft Visual Studio 2003
- ASM51
- RAPIDDRIVER
- Placa com 89C51

A PLACA DO MICROCONTROLADOR

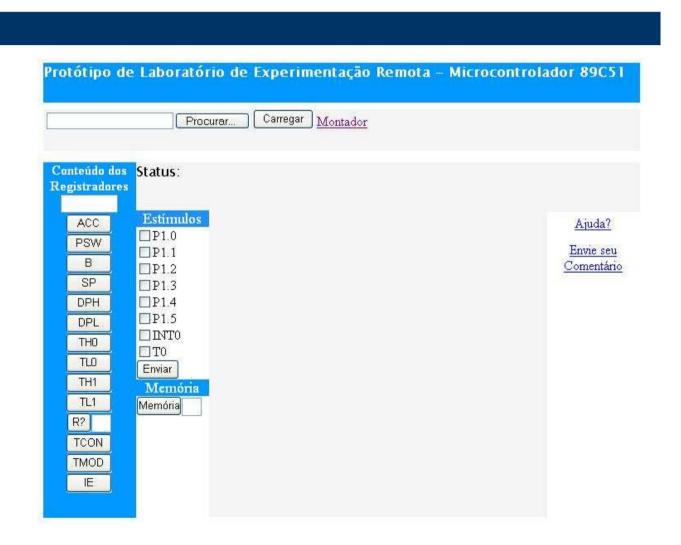
- Desenvolvida por Wisintainer
- Componentes da placa : microcontrolador 89C51, 4 buffers, 1 memória 6224, 3 monoestáveis 74121, 2 GAL, 1 chave para enderaçamento

A PLACA DO MICROCONTROLADOR

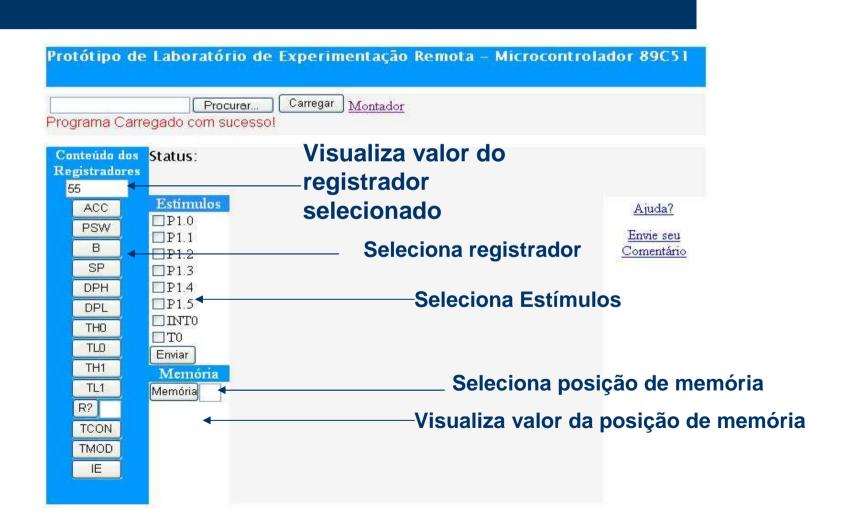
DRIVE PARA COMUNICAÇÃO COM A PLACA

- RAPIDDRIVER (Entech)
- Características: Trial, criação de projetos, suporte a diferentes linguagens, etc.

CÓDIGO DE TRANSFERÊNCIA DO PROGRAMA DO USUÁRIO


```
private void TransferCode()
           //carrega arguivo .BIN e efetua a leitura a partir do endereço 0x8000
          FileStream f = new FileStream(localpath + Session["filename"1.FileMode.open);
          f. Seek (0x8000, Seekoriain, Beain):
          LblMSg.Text = "";
//abrindo Driver (dll)
           driveropen();
          RapidIsa_Cs.RapidIsa.OpenRapidIsa(0);
//detectando a placa do microcontrolador
RapidIsa_Cs.RapidIsa.SetPortByte(hIsa,Address1,0);
          Thread.sleep(200);
          Lb]MSq.Text = RapidIsa_Cs.RapidIsa.GetPortByte(hIsa,Address0).ToString():
          Thread.Sleep(time);
RapidIsa_Cs.RapidIsa.SetPortByte(hIsa,Address1,0);
Thread.Sleep(time);
          //informando o tamánho do programa
          int len = Convert.ToInt32(f.Length-0x8000);
//dividindo o tamanho em 2 bytes
byte ms = Convert.ToByte(len/256);
byte ls = Convert.ToByte(len%256);
          //enviando o byte mais significativo
RapidIsa_Cs.RapidIsa.SetPortByte(hIsa,Address0,ms);
          Thread.Sleep(time);
          //enviando o byte menos significativo
          RapidIsa_Cs.RapidIsa.SetPortByte(hIsa,Address0, ls);
          Thread.Sleep(time);
           //transferindo o programa
          while (f.Position < f.Lenath)
                     byte comando = Convert.ToByte(f.ReadByte());
                     RapidIsa_Cs.RapidIsa.SetPortByte(hIsa,AddressO,comando);
                     Thread. Sleep(time):
          //mandando o "lixo" para informar final de programa
RapidIsa_Cs.RapidIsa.SetPortByte(hIsa,Address0,0);
          Thread.Sleep(time);
          LblMsq.Text = "Programa Carregado com sucesso!";
          f.close();
```

Bem Vindos


Protótipo de Laboratório de Experimentação Remota com Microcontrolador 89C51

Usuário		
Senha		
	Login	

Protótipo desenvolvido pelo Acadêmico Nader Zanotto.



RESULTADOS E DISCUSSÕES

- No geral os objetivos foram atingidos
- Dificuldades com os drivers de comunicação com o barramento ISA

CONCLUSÕES

- O Protótipo cumpriu com os objetivos
- Alcance do protótipo
- Limitações :
 - Sem um editor de texto

EXTENSÕES

- Atualizar o barramento de comunicação da placa
 - ISA -> PCI
- Aumentar e ampliar o número de periféricos controlados