

Orientando:

Jorge L. Pompermayer Junior Orientador:

Francisco Adell Péricas

Roteiro

- Escolha do tema
- 2. Introdução
- 3. Ethernet e Arquitetura TCP/IP
- 4. Segurança e *Sniffers*
- 5. Especificação do protótipo
- 6. Implementação do protótipo
- 7. Conclusões e considerações finais

1. Porque Redes?

- Utilização profissional
- Opção pessoal

2. Porque Segurança?

- Utilização profissional
- Curiosidade
- Redes e segurança andam juntos

3. Porque Linux?

- Características do SO
- Utilização no dia-a-dia
- Curiosidade

- Monitorar pacotes trafegando em uma rede Ethernet
- Interceptar e interpretar pacotes TCP/IP
- Analisar dados contidos nos pacotes
- Identificar situações suspeitas
- Armazenar ou não as informações monitoradas

Introdução

- Necessidade crescente de compartilhar informações remotamente
- Riscos de tentativas de invasão e ataques por hackers
- Surge a necessidade da utilização de ferramentas de monitoração

Arquitetura TCP/IP

Dividido em camadas:

CAMADA DE APLICAÇÃO		DADIOS
— — — — — — — — — — — — — — — — — — —		
DE TRANSPORTE	CA BEÇA LHO	DAD OS
CAMADA INTERNET	CABEÇALHO CABEÇALHO	DADIOS
DE	cabeçalho cabeçalho cabeçalho	DAD OS
DADOS		

Arquitetura TCP/IP (cont.)

- Aplicação: protocolos de alto nível
- Transporte: comunicação entre hosts fim-a-fim, sendo orientados ou não à conexão: TCP, UDP
- Internet: roteamento e entrega dos pacotes IP: IP e ICMP
- Enlace: encapsular pacotes da camada Internet para o padrão da rede associada e vice-versa: Ethernet

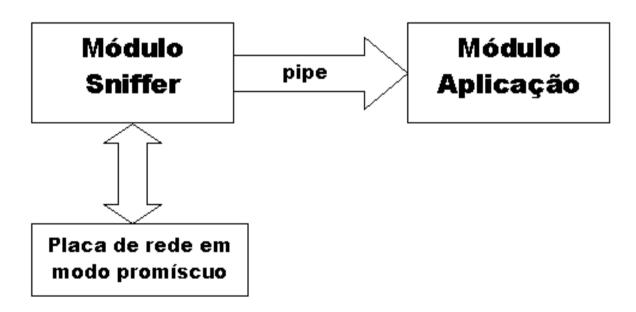
Protocolos monitorados

- IP: transmissão de datagramas entre origem e destino
 - Não orientado à conexão
 - Não assegura seqüência de entrega dos datagramas
- ICMP: indica ocorrência de problemas no transporte de algum datagrama ou serve à operações de controle
- UDP: não orientado à conexão
 - Não assegura seqüência de entrega dos datagramas
- TCP: Orientado à conexão
 - Entrega confiável dos pacotes
 - Entrega seqüencial dos pacotes
 - Controle de fluxo
 - Recuperação de erros

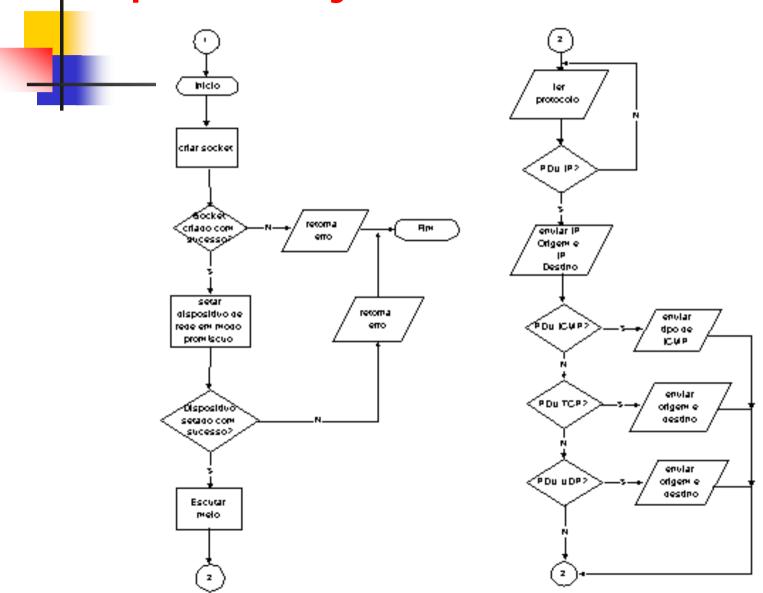
Segurança e Vulnerabilidades

- Descoberta de novas vulnerabilidades a todo momento;
- Hackers X Crackers;
- Atualização técnica por parte do administrador de redes;
- Falhas, problemas, configurações errôneas;
 - Falta de padrões técnicos;
 - Vulnerabilidades dos produtos;
 - Vulnerabilidades nas configurações;
- Políticas de operação;
- Técnicas de invasão;

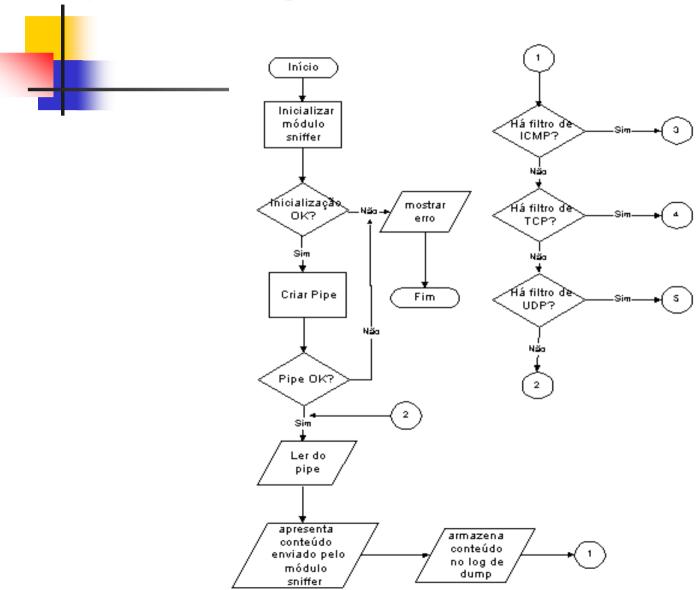
Sniffers


- Ferramenta para captura de pacotes trafegando em uma rede
- Originalmente criada para depuração de problemas de rede
- Utilização por hackers para captura de senhas

Requisitos do protótipo

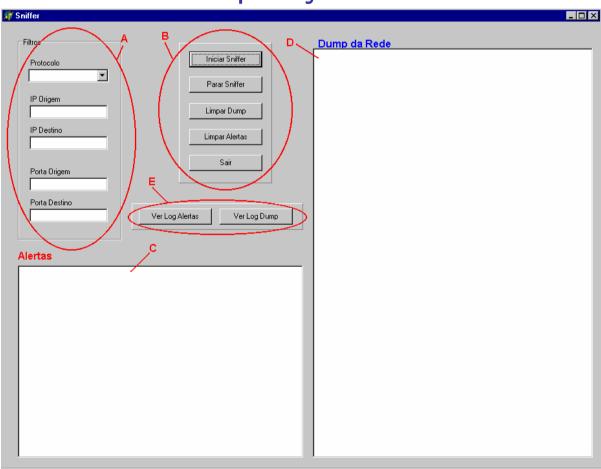

- Host linux conectado a uma rede Ethernet
- Capturar todos pacotes trafegando na rede e analisálos conforme configuração de filtros
- Os protocolos a serem analisados pelo protótipo são:
 IP, ICMP ,TCP e UDP
- Permitir a visualizaçãos dos pacotes capturados
- Gerar logs, que poderão ou não ser armazenados

Especificação


O protótipo é composto por dois módulos: sniffer e aplicação

Especificação do módulo sniffer

Especificação do módulo aplicação



Implementação

- Módulo sniffer implementado em C
- Módulo aplicação implementado em Kylix
- Utilização de pipe entre os módulos

Implementação

Tela do módulo aplicação

Conclusões

- Disponibilização de dados
- Atualização constante por parte do administrador
- Utilização de ferramentas adequadas
- Eficácia por parte do protótipo
- Aplicação, na prática, de conceitos teóricos
- Utilização do Kylix
- Utilização do compilador C

"Todo sistema é seguro, até ser invadido pela primeira vez"

Comentários finais

- Dificuldades enfrentadas:
 - Peculiaridades dos protocolos
 - Documentação
- Limitações:
 - Reconhecimento de cabeçalhos dos protocolos IP, ICMP, TCP, UDP
 - Opções limitadas de filtros
- Extensões
 - Monitoração dos conteúdos dos pacotes
 - Expandir para outros protocolos